mastodontech.de ist einer von vielen unabhängigen Mastodon-Servern, mit dem du dich im Fediverse beteiligen kannst.
Offen für alle (über 16) und bereitgestellt von Markus'Blog

Serverstatistik:

1,4 Tsd.
aktive Profile

#syntheticdata

1 Beitrag1 Beteiligte*r0 Beiträge heute
Bytes Europe<p>How I Won the “Mostly AI” Synthetic Data Challenge <a href="https://www.byteseu.com/1264159/" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://www.</span><span class="">byteseu.com/1264159/</span><span class="invisible"></span></a> <a href="https://pubeurope.com/tags/ArtificialIntelligence" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>ArtificialIntelligence</span></a> <a href="https://pubeurope.com/tags/DataScience" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>DataScience</span></a> <a href="https://pubeurope.com/tags/Science" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Science</span></a> <a href="https://pubeurope.com/tags/SequentialData" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>SequentialData</span></a> <a href="https://pubeurope.com/tags/SyntheticData" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>SyntheticData</span></a> <a href="https://pubeurope.com/tags/SyntheticDataGeneration" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>SyntheticDataGeneration</span></a></p>
Nicole Hennig<p>CoSyn: The open-source tool that’s making GPT-4V-level vision AI accessible to everyone <a href="https://venturebeat.com/business/cosyn-the-open-source-tool-thats-making-gpt-4v-level-vision-ai-accessible-to-everyone/" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">venturebeat.com/business/cosyn</span><span class="invisible">-the-open-source-tool-thats-making-gpt-4v-level-vision-ai-accessible-to-everyone/</span></a> <a href="https://techhub.social/tags/AI" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>AI</span></a> <a href="https://techhub.social/tags/SyntheticData" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>SyntheticData</span></a> <a href="https://techhub.social/tags/VisualInformation" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>VisualInformation</span></a></p>
Dr. Thompson<p>🚀 AI’s hidden superpower? Synthetic data.<br>From life-saving diagnostics to AI rovers on Mars, discover how synthetic data is reshaping what machines can see, learn, and do — at $1 billion scale.<br>👉 Read more:<br><a href="https://medium.com/@rogt.x1997/the-1-billion-impact-of-synthetic-data-inside-ais-fastest-growing-secret-275ed0c811a7" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">medium.com/@rogt.x1997/the-1-b</span><span class="invisible">illion-impact-of-synthetic-data-inside-ais-fastest-growing-secret-275ed0c811a7</span></a><br><a href="https://mastodon.social/tags/SyntheticData" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>SyntheticData</span></a> <a href="https://mastodon.social/tags/AIRevolution" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>AIRevolution</span></a> <a href="https://mastodon.social/tags/DataScience" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>DataScience</span></a><br><a href="https://medium.com/@rogt.x1997/the-1-billion-impact-of-synthetic-data-inside-ais-fastest-growing-secret-275ed0c811a7" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">medium.com/@rogt.x1997/the-1-b</span><span class="invisible">illion-impact-of-synthetic-data-inside-ais-fastest-growing-secret-275ed0c811a7</span></a></p>
CSBJ<p>🧬 Is synthetic data a regulatory loophole or a compliance tool in medicine?</p><p>🔗 Synthetic data in medicine: Legal and ethical considerations for patient profiling. Computational and Structural Biotechnology Journal, DOI: <a href="https://doi.org/10.1016/j.csbj.2025.05.026" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">doi.org/10.1016/j.csbj.2025.05</span><span class="invisible">.026</span></a></p><p>📚 CSBJ Smart Hospital: <a href="https://www.csbj.org/smarthospital" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://www.</span><span class="">csbj.org/smarthospital</span><span class="invisible"></span></a></p><p><a href="https://mastodon.social/tags/SyntheticData" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>SyntheticData</span></a> <a href="https://mastodon.social/tags/HealthTech" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>HealthTech</span></a> <a href="https://mastodon.social/tags/GDPR" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>GDPR</span></a> <a href="https://mastodon.social/tags/AIethics" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>AIethics</span></a> <a href="https://mastodon.social/tags/DigitalHealth" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>DigitalHealth</span></a> <a href="https://mastodon.social/tags/PatientProfiling" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>PatientProfiling</span></a> <a href="https://mastodon.social/tags/DataPrivacy" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>DataPrivacy</span></a> <a href="https://mastodon.social/tags/AIAct" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>AIAct</span></a> <a href="https://mastodon.social/tags/MDR" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>MDR</span></a> <a href="https://mastodon.social/tags/AIinMedicine" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>AIinMedicine</span></a> <a href="https://mastodon.social/tags/EthicalAI" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>EthicalAI</span></a> <a href="https://mastodon.social/tags/HealthcareInnovation" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>HealthcareInnovation</span></a> <a href="https://mastodon.social/tags/HealthTech" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>HealthTech</span></a></p>
Erik-Jan<p>👀 I just stumbled upon this old post where I create a tiny (the smallest I could think of) Generative Adversarial Network in <a href="https://fosstodon.org/tags/rstats" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>rstats</span></a> <a href="https://fosstodon.org/tags/torch" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>torch</span></a> to understand how it works, especially in the context of <a href="https://fosstodon.org/tags/SyntheticData" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>SyntheticData</span></a> </p><p>The GAN learns to generate data from a Normal(1, 3) distribution from scratch</p><p><a href="https://erikjanvankesteren.nl/blog/tiny_gan" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">erikjanvankesteren.nl/blog/tin</span><span class="invisible">y_gan</span></a></p>
Technology Tales<p>Synthetic data—realistic yet artificial—helps organisations overcome data shortages, privacy risks and compliance challenges. It enables safer AI model training, testing edge cases, and simulating new markets, but should complement, not fully replace, real data. <a href="https://mstdn.social/tags/SyntheticData" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>SyntheticData</span></a> <a href="https://mstdn.social/tags/AI" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>AI</span></a> <a href="https://mstdn.social/tags/Innovation" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Innovation</span></a> <a href="https://mstdn.social/tags/DataScience" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>DataScience</span></a> <a href="https://mstdn.social/tags/Privacy" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Privacy</span></a> <a href="https://levelact.com/how-synthetic-data-is-powering-the-next-wave-of-ai-and-innovation/" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">levelact.com/how-synthetic-dat</span><span class="invisible">a-is-powering-the-next-wave-of-ai-and-innovation/</span></a></p>
zartom<p>Can AI Be Trained on Data Generated by Other AI? Exploring the Potential and Pitfalls of Synthetic Training Data<br>AI-generated training data is revolutionizing AI model training! Synthetic data simulates real-world scenarios, offering a more efficient approach. Companies like Anthropic are already using it. Learn more about this exciting new frontier! <a href="https://mastodon.social/tags/SyntheticData" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>SyntheticData</span></a> <a href="https://mastodon.social/tags/AIGeneration" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>AIGeneration</span></a> <a href="https://mastodon.social/tags/AItraining" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>AItraining</span></a> <a href="https://mastodon.social/tags/DataScience" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>DataScience</span></a> <a href="https://mastodon.social/tags/MachineLearning" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>MachineLearning</span></a> <a href="https://mastodon.social/tags/FutureofAI" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>FutureofAI</span></a><br><a href="https://tech-champion.com/data-science/can-ai-be-trained-" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">tech-champion.com/data-science</span><span class="invisible">/can-ai-be-trained-</span></a>...</p>
Michael Fauscette<p>How and why to create synthetic data with generative AI<br><a href="https://zurl.co/tqBt0" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://</span><span class="">zurl.co/tqBt0</span><span class="invisible"></span></a><br><a href="https://techhub.social/tags/ai" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>ai</span></a> <a href="https://techhub.social/tags/genai" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>genai</span></a> <a href="https://techhub.social/tags/syntheticdata" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>syntheticdata</span></a> <a href="https://techhub.social/tags/data" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>data</span></a></p>
olеg lаvrоvsky<p>"All students indicated that working with real data is more fun, challenging and concrete. It motivates them. Students who worked with fake data did not like this as much. In interviews they indicated that they prefer, for example, to work with cases from companies rather than cases invented by teachers." (2018) <a href="https://blog.okfn.org/2018/07/02/changing-minds-by-using-open-data/" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">blog.okfn.org/2018/07/02/chang</span><span class="invisible">ing-minds-by-using-open-data/</span></a> <a href="https://hachyderm.io/tags/openeducation" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>openeducation</span></a> <a href="https://hachyderm.io/tags/okfn" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>okfn</span></a> <a href="https://hachyderm.io/tags/opendata" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>opendata</span></a> <a href="https://hachyderm.io/tags/syntheticdata" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>syntheticdata</span></a></p>
Microsoft DevBlogs<p>Synthetic data generation with GPT-4o was a game changer for us. By creating datasets with common misspellings and syntactic variations, we were able to enhance the robustness of our search models significantly. This crucial step ensured that our AI models could handle a variety of real-world inputs seamlessly. <a href="https://dotnet.social/tags/SyntheticData" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>SyntheticData</span></a> <a href="https://dotnet.social/tags/Innovation" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Innovation</span></a></p>
Alex Jimenez<p>Rockfish is helping enterprises leverage <a href="https://mas.to/tags/SyntheticData" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>SyntheticData</span></a></p><p>Rockfish is startup that uses <a href="https://mas.to/tags/GenerativeAI" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>GenerativeAI</span></a> to create synthetic data for operational workflows to help enterprises break down their data silos.</p><p><a href="https://buff.ly/42agbl6" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://</span><span class="">buff.ly/42agbl6</span><span class="invisible"></span></a></p><p><a href="https://mas.to/tags/DigitalTransformation" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>DigitalTransformation</span></a> <a href="https://mas.to/tags/Data" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Data</span></a> <a href="https://mas.to/tags/AI" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>AI</span></a></p>
LavX News<p>Nvidia's AI Ambitions Threatened by New Export Restrictions</p><p>As the Biden administration proposes stringent export restrictions on AI chips, Nvidia finds itself at a crossroads. With potential impacts on its market position and the global AI race, the stakes ha...</p><p><a href="https://news.lavx.hu/article/nvidia-s-ai-ambitions-threatened-by-new-export-restrictions" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">news.lavx.hu/article/nvidia-s-</span><span class="invisible">ai-ambitions-threatened-by-new-export-restrictions</span></a></p><p><a href="https://mastodon.social/tags/news" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>news</span></a> <a href="https://mastodon.social/tags/tech" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>tech</span></a> <a href="https://mastodon.social/tags/AIChips" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>AIChips</span></a> <a href="https://mastodon.social/tags/ExportRestrictions" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>ExportRestrictions</span></a> <a href="https://mastodon.social/tags/SyntheticData" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>SyntheticData</span></a></p>
Winbuzzer<p>NVIDIA has unveiled Llama Nemotron and Cosmos models at CES 2025, advancing AI agents and physical AI with scalable solutions for enterprises <a href="https://mastodon.social/tags/NVIDIA" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>NVIDIA</span></a> <a href="https://mastodon.social/tags/AI" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>AI</span></a> <a href="https://mastodon.social/tags/AgenticAI" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>AgenticAI</span></a> <a href="https://mastodon.social/tags/CosmosModels" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>CosmosModels</span></a> <a href="https://mastodon.social/tags/LlamaNemotron" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>LlamaNemotron</span></a> <a href="https://mastodon.social/tags/CES2025" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>CES2025</span></a> <a href="https://mastodon.social/tags/Robotics" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Robotics</span></a> <a href="https://mastodon.social/tags/AIDevelopment" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>AIDevelopment</span></a> <a href="https://mastodon.social/tags/PhysicalAI" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>PhysicalAI</span></a> <a href="https://mastodon.social/tags/SyntheticData" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>SyntheticData</span></a> <a href="https://mastodon.social/tags/GenAI" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>GenAI</span></a></p><p><a href="https://winbuzzer.com/2025/01/07/nvidia-advances-agentic-ai-with-llama-and-cosmos-nemotron-models-xcxwbn/" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">winbuzzer.com/2025/01/07/nvidi</span><span class="invisible">a-advances-agentic-ai-with-llama-and-cosmos-nemotron-models-xcxwbn/</span></a></p>
eicker.news ᳇ tech news<p>»The promise and perils of <a href="https://eicker.news/tags/syntheticdata" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>syntheticdata</span></a>: Is it possible for an <a href="https://eicker.news/tags/AI" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>AI</span></a> to be trained just on data generated by another AI?« <a href="https://techcrunch.com/2024/12/24/the-promise-and-perils-of-synthetic-data/?eicker.news" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">techcrunch.com/2024/12/24/the-</span><span class="invisible">promise-and-perils-of-synthetic-data/?eicker.news</span></a> <a href="https://eicker.news/tags/tech" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>tech</span></a> <a href="https://eicker.news/tags/media" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>media</span></a></p>
Nicole Hennig<p>Is AI hitting a wall? <a href="https://www.strangeloopcanon.com/p/is-ai-hitting-a-wall" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://www.</span><span class="ellipsis">strangeloopcanon.com/p/is-ai-h</span><span class="invisible">itting-a-wall</span></a> (interesting case for “no”) <a href="https://techhub.social/tags/AI" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>AI</span></a> <a href="https://techhub.social/tags/SyntheticData" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>SyntheticData</span></a> <a href="https://techhub.social/tags/evals" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>evals</span></a> <a href="https://techhub.social/tags/benchmarks" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>benchmarks</span></a> <a href="https://techhub.social/tags/SCurves" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>SCurves</span></a></p>
Blue Headline - Tech News<p>📊 AI training data could be fully depleted by 2032, according to recent studies. Without fresh datasets, innovation may slow, and bias risks could rise. 🛑</p><p>💡 Can collaborative repositories or synthetic data solve the crisis? Let's discuss!</p><p>👉 Read more: <a href="https://blueheadline.com/tech-news/ai-training-data-exhausted-by-2032/" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">blueheadline.com/tech-news/ai-</span><span class="invisible">training-data-exhausted-by-2032/</span></a></p><p><a href="https://mastodon.social/tags/AI" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>AI</span></a> <a href="https://mastodon.social/tags/Tech" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Tech</span></a> <a href="https://mastodon.social/tags/Innovation" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Innovation</span></a> <a href="https://mastodon.social/tags/AIData" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>AIData</span></a> <a href="https://mastodon.social/tags/BlueHeadline" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>BlueHeadline</span></a> <a href="https://mastodon.social/tags/FutureTech" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>FutureTech</span></a> <a href="https://mastodon.social/tags/ArtificialIntelligence" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>ArtificialIntelligence</span></a> <a href="https://mastodon.social/tags/SyntheticData" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>SyntheticData</span></a> <a href="https://mastodon.social/tags/DataGovernance" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>DataGovernance</span></a></p>
Milos Jovanovik<p>Earlier this year we introduced <a href="https://mastodon.social/tags/RDFGraphGen" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>RDFGraphGen</span></a>, a general-purpose, domain-independent generator of synthetic RDF knowledge graphs, based on <a href="https://mastodon.social/tags/SHACL" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>SHACL</span></a> constraints.</p><p>In July, we published a preprint detailing its design and implementation.</p><p><a href="https://mastodon.social/tags/RDF" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>RDF</span></a> <a href="https://mastodon.social/tags/KnowledgeGraphs" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>KnowledgeGraphs</span></a> <a href="https://mastodon.social/tags/SyntheticData" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>SyntheticData</span></a></p><p><a href="https://arxiv.org/abs/2407.17941" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://</span><span class="">arxiv.org/abs/2407.17941</span><span class="invisible"></span></a></p>
Nicole Hennig<p>Mostly AI’s synthetic text tool can unlock enterprise emails and conversations for AI training <a href="https://venturebeat.com/data-infrastructure/mostly-ais-synthetic-text-tool-can-unlock-enterprise-emails-and-conversations-for-ai-training/" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">venturebeat.com/data-infrastru</span><span class="invisible">cture/mostly-ais-synthetic-text-tool-can-unlock-enterprise-emails-and-conversations-for-ai-training/</span></a> <a href="https://techhub.social/tags/AI" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>AI</span></a> <a href="https://techhub.social/tags/SyntheticData" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>SyntheticData</span></a></p>
Erik-Jan<p>In this way, we _can_ leverage sensitive data in research in an easy and robust way. </p><p>But even this less ambitious goal is difficult to put into practice. So how do we democratize research with sensitive data? Make <a href="https://fosstodon.org/tags/SyntheticData" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>SyntheticData</span></a> more <a href="https://fosstodon.org/tags/Accessible" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Accessible</span></a>!</p><p><a href="https://fosstodon.org/tags/DataScience" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>DataScience</span></a> community, let's focus on creating user-friendly software, teaching our colleagues, and — perhaps most importantly — try to put this stuff in real-world practice. </p><p>Image below adapted from the Center for Open Science</p><p>3/n</p>
Erik-Jan<p>In the short paper, I argue that we are moving towards the fundamental barrier of the privacy-fidelity trade-off in <a href="https://fosstodon.org/tags/SyntheticData" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>SyntheticData</span></a>: the more it looks like the real data, the more privacy risk it incurs.</p><p>Is it all hopeless then? Nope! We can use currently available methods to generate synthetic data on the very private end of the spectrum, and use that to make it easy to write code, try out preliminary analyses, and create <a href="https://fosstodon.org/tags/Reproducible" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Reproducible</span></a> science.</p><p>2/n</p>