mastodontech.de ist einer von vielen unabhängigen Mastodon-Servern, mit dem du dich im Fediverse beteiligen kannst.
Offen für alle (über 16) und bereitgestellt von Markus'Blog

Serverstatistik:

1,4 Tsd.
aktive Profile

#speechai

0 Beiträge0 Beteiligte0 Beiträge heute
pinage404.rss :nixos:<p>As of today, my computer can __nicely__ read aloud for me !</p><p>I'm lazy, i read slowly, so i don't like reading, i skip a lot of articles</p><p>I have been looking for a solution for several months</p><p><a href="https://mamot.fr/tags/Accessibility" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Accessibility</span></a> <a href="https://mamot.fr/tags/A11y" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>A11y</span></a> <a href="https://mamot.fr/tags/Orca" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Orca</span></a> <a href="https://mamot.fr/tags/WebBrowser" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>WebBrowser</span></a> <a href="https://mamot.fr/tags/ZenBrowser" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>ZenBrowser</span></a> <a href="https://mamot.fr/tags/Firefox" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Firefox</span></a> <a href="https://mamot.fr/tags/Piper" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Piper</span></a> <a href="https://mamot.fr/tags/Pied" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Pied</span></a> <a href="https://mamot.fr/tags/SpeechAI" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>SpeechAI</span></a> <a href="https://mamot.fr/tags/AI" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>AI</span></a> <a href="https://mamot.fr/tags/Nix" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Nix</span></a> <a href="https://mamot.fr/tags/NixOS" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>NixOS</span></a></p>
Dirk Schnelle-Walka<p>SpeechAgents: Human-Communication Simulation with Multi-Modal Multi-Agent Systems. Multi-modal LLM system simulates human communication using speech and generates human-like dialogues with consistent content, rhythm, &amp; emotion.</p><p>Funnily, they also elaborate on a &quot;think before you speak&quot; design aspect. This might also be applicable to our everyday lives. </p><p>doi: 10.48550/arXiv.2401.03945 <br /><a href="https://mastodontech.de/tags/LLM" class="mention hashtag" rel="tag">#<span>LLM</span></a> <a href="https://mastodontech.de/tags/multimodal" class="mention hashtag" rel="tag">#<span>multimodal</span></a> <a href="https://mastodontech.de/tags/speechAI" class="mention hashtag" rel="tag">#<span>speechAI</span></a> <a href="https://mastodontech.de/tags/multiagent" class="mention hashtag" rel="tag">#<span>multiagent</span></a> <a href="https://mastodontech.de/tags/conversationalai" class="mention hashtag" rel="tag">#<span>conversationalai</span></a></p>
Kathy Reid<p>For the past couple of years, as each new <span class="h-card" translate="no"><a href="https://mozilla.social/@mozilla" class="u-url mention" rel="nofollow noopener" target="_blank">@<span>mozilla</span></a></span> <a href="https://aus.social/tags/CommonVoice" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>CommonVoice</span></a> dataset of <a href="https://aus.social/tags/voice" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>voice</span></a> <a href="https://aus.social/tags/data" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>data</span></a> is released, I've been using <span class="h-card" translate="no"><a href="https://vis.social/@observablehq" class="u-url mention" rel="nofollow noopener" target="_blank">@<span>observablehq</span></a></span> to visualise the <a href="https://aus.social/tags/metadata" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>metadata</span></a> coverage across the 100+ languages in the dataset. </p><p>Version 17 was released yesterday (big ups to the team - EM Lewis-Jong, <span class="h-card" translate="no"><a href="https://mastodon.social/@jessie" class="u-url mention" rel="nofollow noopener" target="_blank">@<span>jessie</span></a></span>, Gina Moape, Dmitrij Feller) and there's some super interesting insights from the visualisation: </p><p>➡ Catalan (ca) now has more data in Common Voice than English (en) (!)</p><p>➡ The language with the highest average audio utterance duration at nearly 7 seconds is Icelandic (is). Perhaps Icelandic words are longer? I suspect so!</p><p>➡ Spanish (es), Bangla (Bengali) (bn), Mandarin Chinese (zh-CN) and Japanese (ja) all have a lot of recorded utterances that have not yet been validated. Albanian (sq) has the highest percentage of validated utterances, followed closely by Erzya / Arisa (myv).</p><p>➡ Votic (vot) has the highest percentage of invalidated utterances, but with 76% of utterances invalidated, I wonder if this language has been the target of deliberate invalidation activity (invalidating valid sentences, or recording sentences to be deliberately invalid) given the geopolitical instability in Russia currently. </p><p>See the visualisation here and let me know your thoughts below!</p><p>➡ <a href="https://observablehq.com/@kathyreid/mozilla-common-voice-v17-dataset-metadata-coverage" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">observablehq.com/@kathyreid/mo</span><span class="invisible">zilla-common-voice-v17-dataset-metadata-coverage</span></a></p><p><a href="https://aus.social/tags/linguistics" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>linguistics</span></a> <a href="https://aus.social/tags/languages" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>languages</span></a> <a href="https://aus.social/tags/data" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>data</span></a> <a href="https://aus.social/tags/VoiceAI" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>VoiceAI</span></a> <a href="https://aus.social/tags/VoiceData" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>VoiceData</span></a> <a href="https://aus.social/tags/SpeechAI" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>SpeechAI</span></a> <a href="https://aus.social/tags/SpeechData" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>SpeechData</span></a> <a href="https://aus.social/tags/DataViz" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>DataViz</span></a></p>
Kathy Reid<p>Last week, as part of my <a href="https://aus.social/tags/PhD" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>PhD</span></a> program at the <a href="https://aus.social/tags/ANU" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>ANU</span></a> School of <a href="https://aus.social/tags/cybernetics" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>cybernetics</span></a>, I gave my final presentation, which is a summary of my methods and <a href="https://aus.social/tags/research" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>research</span></a> findings. I covered my interview work, the <a href="https://aus.social/tags/dataset" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>dataset</span></a> documentation analysis work I've been doing and my analysis work around <a href="https://aus.social/tags/accents" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>accents</span></a> in <span class="h-card" translate="no"><a href="https://mozilla.social/@mozilla" class="u-url mention" rel="nofollow noopener" target="_blank">@<span>mozilla</span></a></span>'s <a href="https://aus.social/tags/CommonVoice" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>CommonVoice</span></a> platform. </p><p>There were some insightful and thought-provoking questions from my panel and audience members, and of course - so many ideas for future research inquiry! </p><p>A huge thanks to my panel, chaired so well by Professor Alexandra Zafiroglu, to Dr Elizabeth Williams, my meticulous, methodical and always-encouraging Primary Supervisor, and to my co-supervisors Dr Jofish Kaye and Dr Paul Wong 黃仲熙 for their deep expertise in <a href="https://aus.social/tags/HCI" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>HCI</span></a> and <a href="https://aus.social/tags/data" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>data</span></a> respectively. </p><p>Similarly, a huge thank you to my <a href="https://aus.social/tags/PhD" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>PhD</span></a> cohort - Charlotte Bradley, Tom Chan, Danny Bettay and Sam Backwell - as well as the other cohorts in the School - for your encouragement and intellectual journeying. </p><p><a href="https://aus.social/tags/PhD" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>PhD</span></a> <a href="https://aus.social/tags/PhDlife" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>PhDlife</span></a> <a href="https://aus.social/tags/cybernetics" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>cybernetics</span></a> <a href="https://aus.social/tags/milestone" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>milestone</span></a> <a href="https://aus.social/tags/ANU" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>ANU</span></a> <a href="https://aus.social/tags/voiceAI" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>voiceAI</span></a> <a href="https://aus.social/tags/speechAI" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>speechAI</span></a> <a href="https://aus.social/tags/ASR" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>ASR</span></a> <a href="https://aus.social/tags/SpeechRecognition" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>SpeechRecognition</span></a></p>