Mikko Tuomi<p>Identifying the formation period of planetary systems, such as our solar system, could be the beginning of the journey to discover the origin of life.</p><p>The key to this is the unique substructures found in protoplanetary disks—the sites of <a href="https://scicomm.xyz/tags/planet" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>planet</span></a> formation.</p><p>A protoplanetary disk is composed of low-temperature molecular gas and dust, surrounding a <a href="https://scicomm.xyz/tags/protostar" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>protostar</span></a>.</p><p>If a planet exists in the disk, its <a href="https://scicomm.xyz/tags/gravity" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>gravity</span></a> will gather or eject materials within the disk, forming characteristic substructures such as rings or spirals. In other words, various disk substructures can be interpreted as "messages" from the forming <a href="https://scicomm.xyz/tags/planets" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>planets</span></a>.</p><p><a href="https://scicomm.xyz/tags/astronomy" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>astronomy</span></a> <a href="https://scicomm.xyz/tags/exoplanets" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>exoplanets</span></a><br><a href="https://phys.org/news/2025-06-super-resolution-imaging-reveals-planet.html" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">phys.org/news/2025-06-super-re</span><span class="invisible">solution-imaging-reveals-planet.html</span></a></p>