mastodontech.de ist einer von vielen unabhängigen Mastodon-Servern, mit dem du dich im Fediverse beteiligen kannst.
Offen für alle (über 16) und bereitgestellt von Markus'Blog

Serverstatistik:

1,4 Tsd.
aktive Profile

#computability

0 Beiträge0 Beteiligte0 Beiträge heute
Counting Is Hard<p>Thanks to the work of <span class="h-card" translate="no"><a href="https://mastodon.acm.org/@mspstrath" class="u-url mention" rel="nofollow noopener" target="_blank">@<span>mspstrath</span></a></span> all the TYPES 2025 talks are available (including mine)<br>Update: as fred points out the playlist was not supposed to be public yet, so, er watch this space</p><p><a href="https://www.youtube.com/watch?v=W-lYwG3E_x4&amp;" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://www.</span><span class="ellipsis">youtube.com/watch?v=W-lYwG3E_x</span><span class="invisible">4&amp;</span></a></p><p>Like comment and subscribe, ring the bell, all that stuff</p><p><a href="https://mathstodon.xyz/tags/categorytheory" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>categorytheory</span></a> <a href="https://mathstodon.xyz/tags/computability" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>computability</span></a></p>
Counting Is Hard<p>As promised. Here is the sequel to my Weihrauch reductions are Containers post, this time relating strong reductions to dependent adaptors. Enjoy!</p><p><a href="https://www.countingishard.org/blog/strong-reducibility-as-an-adaptor" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://www.</span><span class="ellipsis">countingishard.org/blog/strong</span><span class="invisible">-reducibility-as-an-adaptor</span></a></p><p><a href="https://mathstodon.xyz/tags/categorytheory" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>categorytheory</span></a> <a href="https://mathstodon.xyz/tags/computability" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>computability</span></a></p>
janIn short, intuition, insight, and creativity are not computable.<br>—Aloisius H. Louie, More Than Life Itself<br><a class="hashtag" href="https://pleroma.microblog.se/tag/computability" rel="nofollow noopener" target="_blank">#computability</a> <a class="hashtag" href="https://pleroma.microblog.se/tag/computation" rel="nofollow noopener" target="_blank">#computation</a> <a class="hashtag" href="https://pleroma.microblog.se/tag/abduction" rel="nofollow noopener" target="_blank">#abduction</a>
jan…what if life itself is, even in principle, nonsimulable? There are, of course, many things that mechanization by rote does better than life, in terms of speed, repeatability, precision, and so forth. On the other hand, a living system…may be characterized by its ability to handle ambiguities and take chances, indeed, its ability to err. These are precisely the processes that cannot, by definition…, be modelled algorithmically.<br>—Aloisius H. Louie, More Than Life Itself: A Synthetic Continuation in Relational Biology<br><a class="hashtag" href="https://pleroma.microblog.se/tag/life" rel="nofollow noopener" target="_blank">#life</a> <a class="hashtag" href="https://pleroma.microblog.se/tag/computability" rel="nofollow noopener" target="_blank">#computability</a> <a class="hashtag" href="https://pleroma.microblog.se/tag/computation" rel="nofollow noopener" target="_blank">#computation</a> <a class="hashtag" href="https://pleroma.microblog.se/tag/algorithms" rel="nofollow noopener" target="_blank">#algorithms</a>
jan“A computer is a very specific kind of mathematical structure, it means computational mathematics. If you study the mathematics as an abstract subject you rapidly learn that there are things way way beyond computability. … You can't get at it by an algorithm.”<br>—Roger Penrose<br><a href="https://youtu.be/biUfMZ2dts8?t=942" rel="nofollow noopener" target="_blank">https://youtu.be/biUfMZ2dts8?t=942</a><br><a class="hashtag" href="https://pleroma.microblog.se/tag/mathematics" rel="nofollow noopener" target="_blank">#mathematics</a> <a class="hashtag" href="https://pleroma.microblog.se/tag/computation" rel="nofollow noopener" target="_blank">#computation</a> <a class="hashtag" href="https://pleroma.microblog.se/tag/computability" rel="nofollow noopener" target="_blank">#computability</a> <a class="hashtag" href="https://pleroma.microblog.se/tag/algorithms" rel="nofollow noopener" target="_blank">#algorithms</a>
Tevin<p>Alan Turing had proven that determining whether an arbitrary program will halt (terminate) or run forever is non-computable.</p><p>Sir Roger Penrose claims that human consciousness might involve non-computable processes, thus won't be achievable with current computer-driven AI implementations. However, this doesn't mean that these AIs won't be better than humans in certain tasks.</p><p><a href="https://www.youtube.com/watch?v=biUfMZ2dts8" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://www.</span><span class="ellipsis">youtube.com/watch?v=biUfMZ2dts</span><span class="invisible">8</span></a></p><p><a href="https://mastodon.tevinzhang.com/tags/penrose" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>penrose</span></a> <a href="https://mastodon.tevinzhang.com/tags/turing" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>turing</span></a> <a href="https://mastodon.tevinzhang.com/tags/ai" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>ai</span></a> <a href="https://mastodon.tevinzhang.com/tags/consciousness" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>consciousness</span></a> <a href="https://mastodon.tevinzhang.com/tags/computability" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>computability</span></a></p>
amen zwa, esq.<p>A <a href="https://mathstodon.xyz/tags/ComputerScience" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>ComputerScience</span></a> student who first encounters the <a href="https://mathstodon.xyz/tags/Computability" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Computability</span></a> Theory (𝜆-Calculus, Turing Machine, General Recursive Functions, or the equivalents) ought to be, at once, awed and appalled.</p><p>He ought to be awed that something so simple as the 𝜆-Calculus can express complete complex computations and something so simple as the Turing Machine is conceptually as capable as modern complex computers.</p><p>At the same time, the student ought to be appalled at today's trend of worshiping expedient complexity and denouncing the difficult, but rewarding, pursuit of the basal simplicity that underlies all things computing.</p>
Tom de Jong<p>I'm pleased to announce that the Heyting Day will be held in Amsterdam on Friday 14 March 2025.</p><p>Its theme will be models of <a href="https://mathstodon.xyz/tags/intuitionism" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>intuitionism</span></a> and <a href="https://mathstodon.xyz/tags/computability" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>computability</span></a> and mark the retirement of Jaap van Oosten.</p><p>The invited speakers are:<br>- <span class="h-card" translate="no"><a href="https://mathstodon.xyz/@andrejbauer" class="u-url mention" rel="nofollow noopener" target="_blank">@<span>andrejbauer</span></a></span> (Ljubljana)<br>- Andy Pitts (Cambridge)<br>- Sebastiaan Terwijn (Nijmegen)<br>- Jaap van Oosten (Utrecht)</p><p>Attendance is free. Sign up and more details here: <a href="https://www.knaw.nl/en/heyting-day-2025" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://www.</span><span class="">knaw.nl/en/heyting-day-2025</span><span class="invisible"></span></a></p><p>The attached poster is thanks to the amazing <span class="h-card" translate="no"><a href="https://mathstodon.xyz/@jacobneu" class="u-url mention" rel="nofollow noopener" target="_blank">@<span>jacobneu</span></a></span>.</p>
jan“…AI simply is not intelligent. And there is no way you should be calling it artificial intelligence. It's artificial information processing. That's what the I stands for. And it's done well by a machine that can be vamped up to process an enormous amount of information. but…it doesn't have experience, it doesn't have any of the elements that go to being a human being. And AI people want to know from me in some ways how they can replicate right hemisphere thinking in a computer. … But you cannot turn right hemisphere thinking into something that is computable. It is strictly non-computable because it involves the acceptance of so many uncertainties that there is no place from which it can anchor itself. It can't be done by a series of steps. And what of course is true of right hemisphere thinking is true more generally of organisms and systems in the cosmos, because right hemisphere thinking is better able to reflect the structure of those.”<br>—Iain McGilchrist, Metaphysics and the Matter With Things, Session 3.1 - Saturday Closing Dialogue<br><a class="hashtag" href="https://pleroma.microblog.se/tag/iainmcgilchrist" rel="nofollow noopener" target="_blank">#iainmcgilchrist</a> <a class="hashtag" href="https://pleroma.microblog.se/tag/ai" rel="nofollow noopener" target="_blank">#ai</a> <a class="hashtag" href="https://pleroma.microblog.se/tag/artificialintelligence" rel="nofollow noopener" target="_blank">#artificialintelligence</a> <a class="hashtag" href="https://pleroma.microblog.se/tag/computability" rel="nofollow noopener" target="_blank">#computability</a>
Counting Is Hard<p>I wrote up the post on Weihrauch reducibility &amp; Lenses. Would appreciate any comments / boosts etc.</p><p><a href="https://www.countingishard.org/blog/weihrauch-reducibility-as-a-lens" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://www.</span><span class="ellipsis">countingishard.org/blog/weihra</span><span class="invisible">uch-reducibility-as-a-lens</span></a></p><p><a href="https://mathstodon.xyz/tags/computability" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>computability</span></a> <a href="https://mathstodon.xyz/tags/complexity" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>complexity</span></a> <a href="https://mathstodon.xyz/tags/categorytheory" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>categorytheory</span></a></p>
jan"There is a distinct difference between the modus operandi of the left hemisphere and the right. Left hemisphere procedures are highly computable. AI is really a way of pushing out the left hemisphere's mode of thinking into the environment. But what the right hemisphere does is strictly non-computable because it has no points of certainty in it. A computer needs at least one or two reference points with which to begin working, but in essence there is nothing but experience, either the experience of the cell, or the plant, or the root, or the whatever it is, and so it can't be engineered according to principles."<br><a href="https://youtu.be/YGCYDw9-yDQ?t=1556" rel="nofollow noopener" target="_blank">https://youtu.be/YGCYDw9-yDQ?t=1556</a><br><a class="hashtag" href="https://pleroma.microblog.se/tag/iainmcgilchrist" rel="nofollow noopener" target="_blank">#iainmcgilchrist</a> <a class="hashtag" href="https://pleroma.microblog.se/tag/mcgilchrist" rel="nofollow noopener" target="_blank">#mcgilchrist</a> <a class="hashtag" href="https://pleroma.microblog.se/tag/artificialintelligence" rel="nofollow noopener" target="_blank">#artificialintelligence</a> <a class="hashtag" href="https://pleroma.microblog.se/tag/ai" rel="nofollow noopener" target="_blank">#ai</a> <a class="hashtag" href="https://pleroma.microblog.se/tag/computability" rel="nofollow noopener" target="_blank">#computability</a>
Shakthi Kannan<p>Computability in Europe 2024 Amsterdam, 8-12 July 2024 <a href="https://events.illc.uva.nl/CiE/CiE2024/Main/" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">events.illc.uva.nl/CiE/CiE2024</span><span class="invisible">/Main/</span></a> <a href="https://mastodon.social/tags/theory" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>theory</span></a> <a href="https://mastodon.social/tags/computerscience" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>computerscience</span></a> <a href="https://mastodon.social/tags/logic" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>logic</span></a> <a href="https://mastodon.social/tags/quantum" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>quantum</span></a> <a href="https://mastodon.social/tags/cryptography" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>cryptography</span></a> <a href="https://mastodon.social/tags/computability" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>computability</span></a></p>
Mi Lia<p>Yet another classic, at last found its way to my library. </p><p>I'm wondering. If <a href="https://mathstodon.xyz/tags/computability" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>computability</span></a> and <a href="https://mathstodon.xyz/tags/unsolvability" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>unsolvability</span></a> theories are mostly concerned with the existence of algorithms for classes of problems, if one could prove or disprove such a thing (class of theorems?) starting from <a href="https://mathstodon.xyz/tags/geometry" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>geometry</span></a>.</p><p>I'll explain. I've recently understood (Steenrod et al, "First concepts of topology") that <a href="https://mathstodon.xyz/tags/topology" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>topology</span></a> is mostly concerned in proving existence theorems. The subject matter of this book sounds, in a way, like an attempt to prove such theorems. So naturally I came to wonder if anyone had attempted tackling them with topological means and tools instead. I haven't looked to see if this question even makes sense, but my humble instinct says that maybe yes, and that most likely at least someone has worked on it in the past.</p>
Abde :verified:<p>Hello! </p><p>After a few days figuring out Mastodon with the help of the folks at QOTO, I will formally introduce myself in order to pin this in my profile :)</p><p>My name is Abde and I am a computer scientist. My main domain is <a href="https://qoto.org/tags/NumericalCalculus" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>NumericalCalculus</span></a> and <a href="https://qoto.org/tags/ParallelComputing" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>ParallelComputing</span></a>. I am currently a PhD student at the Université Libre de Bruxelles (<a href="https://qoto.org/tags/belgium" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>belgium</span></a>) and working on porting numerical solvers for simulations on the GPU using <a href="https://qoto.org/tags/CUDA" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>CUDA</span></a>. You may find my first paper here: <a href="https://etna.math.kent.edu/vol.55.2022/pp687-705.dir/pp687-705.pdf" rel="nofollow noopener" target="_blank"><span class="invisible">https://</span><span class="ellipsis">etna.math.kent.edu/vol.55.2022</span><span class="invisible">/pp687-705.dir/pp687-705.pdf</span></a></p><p>Other research interests are <a href="https://qoto.org/tags/complexity" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>complexity</span></a> <a href="https://qoto.org/tags/computability" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>computability</span></a> <a href="https://qoto.org/tags/graphtheory" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>graphtheory</span></a> <a href="https://qoto.org/tags/geometry" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>geometry</span></a> <a href="https://qoto.org/tags/discretemath" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>discretemath</span></a></p><p>I also work as a <a href="https://qoto.org/tags/VirtualReality" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>VirtualReality</span></a> developer. My current professional interests are <a href="https://qoto.org/tags/simulations" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>simulations</span></a> <a href="https://qoto.org/tags/numericalcalculus" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>numericalcalculus</span></a> <a href="https://qoto.org/tags/geometry" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>geometry</span></a>. We also contribute in several <a href="https://qoto.org/tags/opensource" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>opensource</span></a> projects. Most of my work is done in <a href="https://qoto.org/tags/Unity3D" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Unity3D</span></a>, so feel free to ask any questions!</p><p>As a hobby I do some <a href="https://qoto.org/tags/gamedev" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>gamedev</span></a> and also <a href="https://qoto.org/tags/musicproduction" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>musicproduction</span></a>. I will share some snippets of what I do here, but for now I am focusing in crafting my art by producing <a href="https://qoto.org/tags/housemusic" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>housemusic</span></a> in <a href="https://qoto.org/tags/bitwig" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>bitwig</span></a>.</p><p>Please enjoy! I am not the most active but I am looking to build my Mastodon network, so feel free to follow and I will follow back :)</p><p><a href="https://qoto.org/tags/introduction" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>introduction</span></a> <a href="https://qoto.org/tags/mastodon" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>mastodon</span></a> <a href="https://qoto.org/tags/newcomer" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>newcomer</span></a> <a href="https://qoto.org/tags/developer" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>developer</span></a> <a href="https://qoto.org/tags/music" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>music</span></a> <a href="https://qoto.org/tags/programming" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>programming</span></a></p>
Richard Zach<p>I'm a logician and historian and philosopher of <a href="https://mathstodon.xyz/tags/logic" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>logic</span></a>, <a href="https://mathstodon.xyz/tags/computability" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>computability</span></a>, and analytic philosophy. I run <a href="https://openlogicproject.org/" rel="nofollow noopener" target="_blank"><span class="invisible">https://</span><span class="">openlogicproject.org/</span><span class="invisible"></span></a> <a href="https://mathstodon.xyz/tags/Introduction" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Introduction</span></a> <a href="https://mathstodon.xyz/tags/philosophy" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>philosophy</span></a></p>