mastodontech.de ist einer von vielen unabhängigen Mastodon-Servern, mit dem du dich im Fediverse beteiligen kannst.
Offen für alle (über 16) und bereitgestellt von Markus'Blog

Serverstatistik:

1,5 Tsd.
aktive Profile

#randomwalk

1 Beitrag1 Beteiligte*r0 Beiträge heute
Steven P. Sanderson II, MPH<p>Want to visualize a 2D Random Walk of the Wilcox distribution in <a class="hashtag" rel="nofollow noopener" href="https://bsky.app/search?q=%23R" target="_blank">#R</a> then the RandomWalker package developed by myself and Antti Rask can do that. <a class="hashtag" rel="nofollow noopener" href="https://bsky.app/search?q=%23R" target="_blank">#R</a> <a class="hashtag" rel="nofollow noopener" href="https://bsky.app/search?q=%23RStats" target="_blank">#RStats</a> <a class="hashtag" rel="nofollow noopener" href="https://bsky.app/search?q=%23RandomWalker" target="_blank">#RandomWalker</a> <a class="hashtag" rel="nofollow noopener" href="https://bsky.app/search?q=%23RandomWalk" target="_blank">#RandomWalk</a> <a class="hashtag" rel="nofollow noopener" href="https://bsky.app/search?q=%23Visualization" target="_blank">#Visualization</a> <a class="hashtag" rel="nofollow noopener" href="https://bsky.app/search?q=%23ggplot2" target="_blank">#ggplot2</a> <a class="hashtag" rel="nofollow noopener" href="https://bsky.app/search?q=%23TidyData" target="_blank">#TidyData</a></p>
Jörg Kantel<p>Hexagonaler Random Walk mit TigerJython</p><p>Der bei Microsoft forschende Psychologe und Informatiker Dan Goldstein berichtet in seinem Blog, wie er mit seiner neunjährigen Tochter in einem Bagel-Shop warten mußte. Um sich die Langeweile zu verkürzen, kramte er ein hexagonal-kariertes Blatt Papier und einen Würfel hervor (Psychologen bei Microsoft haben immer ein hexagonal-karierten Notizblock und einen Würfel in der Tasche). <a href="https://kantel.github.io/posts/2025061802_hexawalk/" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">kantel.github.io/posts/2025061</span><span class="invisible">802_hexawalk/</span></a> <a href="https://mastodon.social/tags/TigerJython" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>TigerJython</span></a> <a href="https://mastodon.social/tags/RandomWalk" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>RandomWalk</span></a> <a href="https://mastodon.social/tags/Python" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Python</span></a> <a href="https://mastodon.social/tags/CreativeCoding" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>CreativeCoding</span></a></p>
codeismycanvas<p><a href="https://universeodon.com/tags/genuary17" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>genuary17</span></a> - Pi is 4? When contemplating how to approach this one, I recalled the fascinating Monte Carlo methods for calculating pi, like counting how many random dots fall inside a circle, or Buffon's needle experiment. A method unfamiliar to me until now method is based on random walk. I had to code it up and try it, and then thought about what would have to change to make pi come out to be 4. Instead of a random walk where each step is randomly either -1 or 1, the steps would need to be approximately -0.885 or +0.885. This image visualizes the difference, with the cream color walks for the regular pi, and the turquoise paths the "pi=4". <a href="https://universeodon.com/tags/pi" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>pi</span></a> <a href="https://universeodon.com/tags/randomwalk" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>randomwalk</span></a> <a href="https://universeodon.com/tags/genuary" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>genuary</span></a> <a href="https://universeodon.com/tags/genuary2025" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>genuary2025</span></a></p>
Valentin Lecheval<p>Hot from the press, with Richard Mann<br> and <span class="h-card" translate="no"><a href="https://ecoevo.social/@elva" class="u-url mention" rel="nofollow noopener" target="_blank">@<span>elva</span></a></span>: 🐜 Random walks with spatial and temporal resets can explain individual and colony-level searching patterns in ants</p><p><a href="https://royalsocietypublishing.org/doi/10.1098/rsif.2024.0149" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">royalsocietypublishing.org/doi</span><span class="invisible">/10.1098/rsif.2024.0149</span></a></p><p><a href="https://ecoevo.social/tags/physics" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>physics</span></a> <a href="https://ecoevo.social/tags/ants" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>ants</span></a> <a href="https://ecoevo.social/tags/animalmovement" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>animalmovement</span></a> <a href="https://ecoevo.social/tags/animabehaviour" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>animabehaviour</span></a> <a href="https://ecoevo.social/tags/randomwalk" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>randomwalk</span></a> <a href="https://ecoevo.social/tags/behaviouralecology" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>behaviouralecology</span></a></p>
Jörg Kantel<p>Hexagonaler Random Walker (mit der Turtle und in Trinket) </p><p>Da ich mit meinen Spiralen Blut geleckt hatte, wollte ich unbedingt zu Beginn des Jahres noch etwas mit Pythons Turtle anstellen. Also habe ich den hexagonalen Random Walk, den ich im Dezember 2017 schon einmal hier in diesem Blog Kritzelheft vorgestellt hatte, wieder aus der Mottenkiste hervorgekramt und ein wenig aufgehübscht. <a href="https://kantel.github.io/posts/2024010501_hex_rand_walk/" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">kantel.github.io/posts/2024010</span><span class="invisible">501_hex_rand_walk/</span></a> <a href="https://mastodon.social/tags/Python" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Python</span></a> <a href="https://mastodon.social/tags/Turtle" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Turtle</span></a> <a href="https://mastodon.social/tags/CreativeCoding" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>CreativeCoding</span></a> <a href="https://mastodon.social/tags/RandomWalk" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>RandomWalk</span></a> <a href="https://mastodon.social/tags/Trinket" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Trinket</span></a></p>