mastodontech.de ist einer von vielen unabhängigen Mastodon-Servern, mit dem du dich im Fediverse beteiligen kannst.
Offen für alle (über 16) und bereitgestellt von Markus'Blog

Serverstatistik:

1,5 Tsd.
aktive Profile

#langchain

1 Beitrag1 Beteiligte*r0 Beiträge heute
michabbb<p>Works with <a href="https://social.vivaldi.net/tags/Python" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Python</span></a> <a href="https://social.vivaldi.net/tags/JavaScript" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>JavaScript</span></a> <a href="https://social.vivaldi.net/tags/TypeScript" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>TypeScript</span></a> <a href="https://social.vivaldi.net/tags/Go" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Go</span></a> supporting frameworks like <a href="https://social.vivaldi.net/tags/LangChain" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>LangChain</span></a> <a href="https://social.vivaldi.net/tags/LlamaIndex" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>LlamaIndex</span></a> <a href="https://social.vivaldi.net/tags/Genkit" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Genkit</span></a> &amp; more<br>Github: <a href="https://github.com/googleapis/genai-toolbox" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">github.com/googleapis/genai-to</span><span class="invisible">olbox</span></a><br>MCP Manual: <a href="https://cloud.google.com/sql/docs/mysql/pre-built-tools-with-mcp-toolbox" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">cloud.google.com/sql/docs/mysq</span><span class="invisible">l/pre-built-tools-with-mcp-toolbox</span></a></p>
OpenSearch Project<p>OpenSearch’s new MCP standard lets LLMs like Claude securely access + act on your data — no brittle glue code.</p><p>🧠 Dynamic tool discovery<br>🔐 Built-in auth + security<br>⚙️ Unified JSON interface</p><p>Build smarter AI assistants + RAG apps →<br>🔗 <a href="https://opensearch.org/blog/introducing-mcp-in-opensearch/" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">opensearch.org/blog/introducin</span><span class="invisible">g-mcp-in-opensearch/</span></a></p><p><a href="https://fosstodon.org/tags/Claude" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Claude</span></a> <a href="https://fosstodon.org/tags/OpenSearch" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>OpenSearch</span></a> <a href="https://fosstodon.org/tags/MCP" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>MCP</span></a> <a href="https://fosstodon.org/tags/AIInfra" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>AIInfra</span></a> <a href="https://fosstodon.org/tags/RAG" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>RAG</span></a> <a href="https://fosstodon.org/tags/LangChain" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>LangChain</span></a> <a href="https://fosstodon.org/tags/OpenSource" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>OpenSource</span></a></p>
Dr. Thompson<p>🧠 Want to build AI that acts, not just chats?</p><p>Discover why OpenAI’s new Agents SDK is outperforming LangChain and AutoGen in 2025. From agent chaining to built-in guardrails, this SDK changes the game for devs.</p><p>👇 Here’s your edge in the Agentic AI era:</p><p>🔗 <a href="https://medium.com/@rogt.x1997/7-reasons-why-openais-agents-sdk-beats-langchain-and-autogen-in-2025-690b58007e54" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">medium.com/@rogt.x1997/7-reaso</span><span class="invisible">ns-why-openais-agents-sdk-beats-langchain-and-autogen-in-2025-690b58007e54</span></a></p><p><a href="https://mastodon.social/tags/AgenticAI" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>AgenticAI</span></a> <a href="https://mastodon.social/tags/OpenAI" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>OpenAI</span></a> <a href="https://mastodon.social/tags/LangChain" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>LangChain</span></a> <a href="https://mastodon.social/tags/PythonDev" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>PythonDev</span></a><br><a href="https://medium.com/@rogt.x1997/7-reasons-why-openais-agents-sdk-beats-langchain-and-autogen-in-2025-690b58007e54" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">medium.com/@rogt.x1997/7-reaso</span><span class="invisible">ns-why-openais-agents-sdk-beats-langchain-and-autogen-in-2025-690b58007e54</span></a></p>
Sarah Lea<p>LangWHAT?<br>You've seen names like LangChain, LangGraph, LangFlow or LangSmith – but what’s really behind them?</p><p>:blobcoffee: LangChain helps us build LLM apps via modular code.</p><p>:blobcoffee: LangGraph adds branching logic and multi-agent workflows.</p><p>:blobcoffee: LangFlow lets us create flows with drag &amp; drop.</p><p>:blobcoffee: LangSmith monitors and evaluates our LLM stack.</p><p>LangChain, LangGraph and LangSmith come from the same ecosystem. LangFlow is a visual builder developed independently by DataStax.</p><p>Tried both LangChain and Langflow to build the same chatbot — Medium article coming shortly.</p><p><a href="https://techhub.social/tags/LangChain" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>LangChain</span></a> <a href="https://techhub.social/tags/LangFlow" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>LangFlow</span></a> <a href="https://techhub.social/tags/LLM" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>LLM</span></a> <a href="https://techhub.social/tags/AI" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>AI</span></a> <a href="https://techhub.social/tags/KI" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>KI</span></a> <a href="https://techhub.social/tags/python" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>python</span></a> <a href="https://techhub.social/tags/OpenSource" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>OpenSource</span></a> <a href="https://techhub.social/tags/LangGraph" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>LangGraph</span></a> <a href="https://techhub.social/tags/LangSmith" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>LangSmith</span></a> <a href="https://techhub.social/tags/technology" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>technology</span></a> <a href="https://techhub.social/tags/chatbot" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>chatbot</span></a> <a href="https://techhub.social/tags/ollama" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>ollama</span></a></p>
Alvin Ashcraft 🐿️<p>Microsoft and LangChain: Leading the Way in AI Security for Open Source on Azure.</p><p><a href="https://devblogs.microsoft.com/blog/microsoft-and-langchain-leading-the-way-in-ai-security-for-open-source-on-azure" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">devblogs.microsoft.com/blog/mi</span><span class="invisible">crosoft-and-langchain-leading-the-way-in-ai-security-for-open-source-on-azure</span></a> </p><p><a href="https://hachyderm.io/tags/ai" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>ai</span></a> <a href="https://hachyderm.io/tags/langchain" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>langchain</span></a> <a href="https://hachyderm.io/tags/security" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>security</span></a> <a href="https://hachyderm.io/tags/oss" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>oss</span></a> <a href="https://hachyderm.io/tags/azure" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>azure</span></a> <a href="https://hachyderm.io/tags/cloud" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>cloud</span></a></p>
Towards Data Science<p>Want to build a generative AI web app without the headache? Ed Izaguirre explores the full spectrum, from complex MERN stacks with <a href="https://hachyderm.io/tags/LangChain" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>LangChain</span></a> and Pinecone, to surprisingly capable single-file SQLite monoliths.</p><p><a href="https://towardsdatascience.com/the-simplest-possible-ai-web-app/" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">towardsdatascience.com/the-sim</span><span class="invisible">plest-possible-ai-web-app/</span></a></p>
Dr. Thompson<p>🚀 Think you know how GenAI works?<br>It's not just prompts. It’s orchestration with 25 next-gen Python libraries powering the world’s smartest LLMs: agents, memory, RAG, grammar control &amp; more 🧠💻<br>Dive into the tools under the hood of AI in 2025 👇<br>🔗 <a href="https://medium.com/@rogt.x1997/25-groundbreaking-python-libraries-powering-genai-workflows-in-2025-982add3d9301" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">medium.com/@rogt.x1997/25-grou</span><span class="invisible">ndbreaking-python-libraries-powering-genai-workflows-in-2025-982add3d9301</span></a><br><a href="https://mastodon.social/tags/GenAI" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>GenAI</span></a> <a href="https://mastodon.social/tags/PythonLibraries" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>PythonLibraries</span></a> <a href="https://mastodon.social/tags/LLM" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>LLM</span></a> <a href="https://mastodon.social/tags/AIstack" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>AIstack</span></a> <a href="https://mastodon.social/tags/LangChain" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>LangChain</span></a> <a href="https://mastodon.social/tags/AutoGen" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>AutoGen</span></a> <a href="https://mastodon.social/tags/AItools" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>AItools</span></a> <a href="https://mastodon.social/tags/ArtificialIntelligence" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>ArtificialIntelligence</span></a><br><a href="https://medium.com/@rogt.x1997/25-groundbreaking-python-libraries-powering-genai-workflows-in-2025-982add3d9301" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">medium.com/@rogt.x1997/25-grou</span><span class="invisible">ndbreaking-python-libraries-powering-genai-workflows-in-2025-982add3d9301</span></a></p>
Kris<p>Started building LLM apps with Rust + rig.rs, now diving into LangGraph and Python too. Been a super fun ride so far 🤓🛠️</p><p><a href="https://mastodon.social/tags/Rust" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Rust</span></a> <a href="https://mastodon.social/tags/Python" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Python</span></a> <a href="https://mastodon.social/tags/LLM" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>LLM</span></a> <a href="https://mastodon.social/tags/AI" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>AI</span></a> <a href="https://mastodon.social/tags/LangChain" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>LangChain</span></a></p>
HAPPY HAGGEN<p>🚀 Built a RAG system with LangChain, OpenSearch, Google’s Gemini &amp; OpenAI embeddings! Transform data into smart apps—optimize, deploy, and innovate. Your AI toolkit is ready. 🔍💡 <a href="https://techhub.social/tags/AI" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>AI</span></a> <a href="https://techhub.social/tags/RAG" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>RAG</span></a> <a href="https://techhub.social/tags/LangChain" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>LangChain</span></a> <a href="https://techhub.social/tags/GenerativeAI" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>GenerativeAI</span></a> <a href="https://zilliz.com/tutorials/rag/langchain-and-opensearch-and-google-vertex-ai-gemini-2.0-pro-and-openai-text-embedding-ada-002" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">zilliz.com/tutorials/rag/langc</span><span class="invisible">hain-and-opensearch-and-google-vertex-ai-gemini-2.0-pro-and-openai-text-embedding-ada-002</span></a></p>
Mark Free<p>"Built a RAG system with LangChain, OpenSearch, Fireworks AI's Llama 3.1, and Azure embeddings! 🚀 Optimize, calculate costs, and innovate. <a href="https://techhub.social/tags/GenerativeAI" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>GenerativeAI</span></a> <a href="https://techhub.social/tags/RAG" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>RAG</span></a> <a href="https://techhub.social/tags/LangChain" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>LangChain</span></a> <a href="https://techhub.social/tags/Llama3" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Llama3</span></a>" <a href="https://zilliz.com/tutorials/rag/langchain-and-opensearch-and-fireworks-ai-llama-3.1-8b-instruct-and-azure-text-embedding-3-large" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">zilliz.com/tutorials/rag/langc</span><span class="invisible">hain-and-opensearch-and-fireworks-ai-llama-3.1-8b-instruct-and-azure-text-embedding-3-large</span></a></p>
Microsoft DevBlogs<p>ONNX Runtime GenAI is the optimal choice! <a href="https://dotnet.social/tags/AI" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>AI</span></a> <a href="https://dotnet.social/tags/OnPrem" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>OnPrem</span></a> <a href="https://dotnet.social/tags/MachineLearning" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>MachineLearning</span></a> <a href="https://dotnet.social/tags/LangChain" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>LangChain</span></a></p><p>For more information check: <a href="https://devblogs.microsoft.com/ise/running-rag-onnxruntime-genai/" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">devblogs.microsoft.com/ise/run</span><span class="invisible">ning-rag-onnxruntime-genai/</span></a>.</p>
Harald Klinke<p>Neo4j treibt mit GraphRAG, Vektor-Indizes &amp; Agentic RAG die <a href="https://det.social/tags/KI" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>KI</span></a>-Entwicklung voran. Ob <a href="https://det.social/tags/LangChain" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>LangChain</span></a>, <a href="https://det.social/tags/LlamaIndex" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>LlamaIndex</span></a>, <a href="https://det.social/tags/SpringAI" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>SpringAI</span></a> oder <a href="https://det.social/tags/VertexAI" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>VertexAI</span></a> – das neue Python-Paket und das Model Context Protocol (MCP) verknüpfen Graphdaten nahtlos mit <a href="https://det.social/tags/LLM" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>LLM</span></a>-Anwendungen.<br><a href="https://det.social/tags/Neo4j" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Neo4j</span></a> <a href="https://det.social/tags/GenAI" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>GenAI</span></a> <a href="https://det.social/tags/RAG" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>RAG</span></a> <a href="https://det.social/tags/GraphQL" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>GraphQL</span></a> <a href="https://det.social/tags/Cypher" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Cypher</span></a> <a href="https://det.social/tags/VectorSearch" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>VectorSearch</span></a> <a href="https://det.social/tags/AgenticAI" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>AgenticAI</span></a><br><a href="https://www.bigdata-insider.de/leistungssprung-bei-graph-datenbanken-mit-ki-integration-cloud-skalierung-und-terabyte-graphen-a-2307ed20cfaf562a1a0094b712b5be95/" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://www.</span><span class="ellipsis">bigdata-insider.de/leistungssp</span><span class="invisible">rung-bei-graph-datenbanken-mit-ki-integration-cloud-skalierung-und-terabyte-graphen-a-2307ed20cfaf562a1a0094b712b5be95/</span></a></p>
Sarah Lea<p>Understand RAG at Easter? 🐣 Why not use the time to learn something new — and build your own local PDF chatbot?</p><p>Learn how chunking, embeddings and vector search work in practice - with LangChain, FAISS, Ollama and Mistral running entirely on your machine (no API key required).</p><p>Perfect for beginners - here's the full guide &amp; GitHub repo 👇</p><p>:blobcoffee: step-by-step guide: <a href="https://bit.ly/3EfOHB9" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://</span><span class="">bit.ly/3EfOHB9</span><span class="invisible"></span></a><br>:blobcoffee: GitHub Repo: <a href="https://bit.ly/3EtqYgK" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://</span><span class="">bit.ly/3EtqYgK</span><span class="invisible"></span></a></p><p><a href="https://techhub.social/tags/RAG" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>RAG</span></a> <a href="https://techhub.social/tags/Langchain" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Langchain</span></a> <a href="https://techhub.social/tags/Mistral" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Mistral</span></a> <a href="https://techhub.social/tags/LLM" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>LLM</span></a> <a href="https://techhub.social/tags/AI" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>AI</span></a> <a href="https://techhub.social/tags/Chatbot" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Chatbot</span></a> <a href="https://techhub.social/tags/KI" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>KI</span></a> <a href="https://techhub.social/tags/Python" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Python</span></a> <a href="https://techhub.social/tags/Technology" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Technology</span></a> <a href="https://techhub.social/tags/DataScience" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>DataScience</span></a> <a href="https://techhub.social/tags/Easter" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Easter</span></a></p>
:rss: Qiita - 人気の記事<p>`langchain-mcp-adapters` を使用した LangChain と MCP サーバーの連携<br><a href="https://qiita.com/nanami_bitwise/items/d04dedb0c276bb624d8a?utm_campaign=popular_items&amp;utm_medium=feed&amp;utm_source=popular_items" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">qiita.com/nanami_bitwise/items</span><span class="invisible">/d04dedb0c276bb624d8a?utm_campaign=popular_items&amp;utm_medium=feed&amp;utm_source=popular_items</span></a></p><p><a href="https://rss-mstdn.studiofreesia.com/tags/qiita" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>qiita</span></a> <a href="https://rss-mstdn.studiofreesia.com/tags/Python" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Python</span></a> <a href="https://rss-mstdn.studiofreesia.com/tags/AI" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>AI</span></a> <a href="https://rss-mstdn.studiofreesia.com/tags/MCP" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>MCP</span></a> <a href="https://rss-mstdn.studiofreesia.com/tags/LangChain" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>LangChain</span></a> <a href="https://rss-mstdn.studiofreesia.com/tags/MCP%E3%82%B5%E3%83%BC%E3%83%90%E3%83%BC" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>MCPサーバー</span></a></p>
Hacker News<p>Quick Primer on MCP Using Ollama and LangChain</p><p><a href="https://www.polarsparc.com/xhtml/MCP.html" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://www.</span><span class="">polarsparc.com/xhtml/MCP.html</span><span class="invisible"></span></a></p><p><a href="https://mastodon.social/tags/HackerNews" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>HackerNews</span></a> <a href="https://mastodon.social/tags/MCP" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>MCP</span></a> <a href="https://mastodon.social/tags/Ollama" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Ollama</span></a> <a href="https://mastodon.social/tags/LangChain" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>LangChain</span></a> <a href="https://mastodon.social/tags/TechTutorial" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>TechTutorial</span></a> <a href="https://mastodon.social/tags/Programming" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Programming</span></a></p>
Sarfraaz Ahmed<p>🛫 Getting started with LangChain<br>✨ Rerun your failed tests in PyTest<br>✨ Usefulness of Context Managers in Python<br>✨ Testing your Flask App</p><p>Latest Edition of My Voyage of Discovery: <a href="http://eepurl.com/jbSOOQ" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">http://</span><span class="">eepurl.com/jbSOOQ</span><span class="invisible"></span></a><br>Subscribe for more at: <a href="http://eepurl.com/iu6PFU" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">http://</span><span class="">eepurl.com/iu6PFU</span><span class="invisible"></span></a></p><p><a href="https://mastodon.social/tags/LangChain" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>LangChain</span></a> <a href="https://mastodon.social/tags/PyTest" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>PyTest</span></a> <a href="https://mastodon.social/tags/python" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>python</span></a> <a href="https://mastodon.social/tags/Advanced" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Advanced</span></a> <a href="https://mastodon.social/tags/Flask" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Flask</span></a> <a href="https://mastodon.social/tags/MyVoD" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>MyVoD</span></a></p>
Alessio Pomaro<p>🧠 In questo test, in una SERP di <a href="https://mastodon.uno/tags/Google" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Google</span></a> in cui compare <a href="https://mastodon.uno/tags/AI" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>AI</span></a> Overviews, ho preso i contenuti nelle prime 12 posizioni e ho creato un piccolo <a href="https://mastodon.uno/tags/RAG" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>RAG</span></a> usando <a href="https://mastodon.uno/tags/LangChain" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>LangChain</span></a>, <a href="https://mastodon.uno/tags/Chroma" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Chroma</span></a> DB e <a href="https://mastodon.uno/tags/GPT4o" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>GPT4o</span></a>. <br>✨ Inviandolo la query al RAG, ottengo una risposta simile a quella proposta da AI Overviews. <br>💡 Chiaramente Google usa anche query correlate ("fan-out") e il Knowledge Graph per espandere i risultati.</p><p><a href="https://mastodon.uno/tags/AI" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>AI</span></a> <a href="https://mastodon.uno/tags/GenAI" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>GenAI</span></a> <a href="https://mastodon.uno/tags/GenerativeAI" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>GenerativeAI</span></a> <a href="https://mastodon.uno/tags/IntelligenzaArtificiale" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>IntelligenzaArtificiale</span></a> <a href="https://mastodon.uno/tags/LLM" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>LLM</span></a>&nbsp;</p>
Sarah Lea<p>What is an agent?<br>That’s what Day 3 of Kaggle’s Gen AI Challenge is all about.</p><p>:blobcoffee: An agent is a system that observes its environment, plans actions, uses tools like APIs, functions, or data stores, and acts autonomously to achieve a goal – often over multiple steps (see whitepaper from Google below).</p><p>The cognitive architecture of an agent consists of three essential components:<br>🧠 a model (like a language model),<br>🔧 tools (like APIs or functions), and<br>🎯 an orchestration layer that coordinates reasoning and action.</p><p>You can build such agents using tools like LangChain and LangGraph.</p><p>The full whitepaper from course day 3: <a href="https://www.kaggle.com/whitepaper-agents" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://www.</span><span class="">kaggle.com/whitepaper-agents</span><span class="invisible"></span></a></p><p><a href="https://techhub.social/tags/agenticAI" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>agenticAI</span></a> <a href="https://techhub.social/tags/genai" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>genai</span></a> <a href="https://techhub.social/tags/GenerativeAI" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>GenerativeAI</span></a> <a href="https://techhub.social/tags/ai" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>ai</span></a> <a href="https://techhub.social/tags/ki" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>ki</span></a> <a href="https://techhub.social/tags/google" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>google</span></a> <a href="https://techhub.social/tags/kaggle" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>kaggle</span></a> <a href="https://techhub.social/tags/llm" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>llm</span></a> <a href="https://techhub.social/tags/langchain" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>langchain</span></a></p>
Nicolas Fränkel 🇺🇦🇬🇪<p>La Grosse Conf 2025 - <a href="https://mastodon.top/tags/LangChain" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>LangChain</span></a> : <a href="https://mastodon.top/tags/OpenSource" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>OpenSource</span></a>, compléxité et adaptation permanente</p><p><a href="https://blog.octo.com/la-grosse-conf-2025-langchain--opensource-complexite-et-adaptation-permanente" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">blog.octo.com/la-grosse-conf-2</span><span class="invisible">025-langchain--opensource-complexite-et-adaptation-permanente</span></a></p>
Philipp Krenn<p>sneak peek: we'll have an <a href="https://mastodon.social/tags/elastic" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>elastic</span></a> developer event in mountain view in may — single track and just engineering. and I'll make sure to keep it *very* technical: besides developers from <a href="https://mastodon.social/tags/LangChain" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>LangChain</span></a> and <a href="https://mastodon.social/tags/github" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>github</span></a> with more to come, we'll have shay (elasticsearch creator), costin (who most recently worked on JOINs for ES|QL), and dinesh (currently researching on agentic search) from elastic 1/2</p>