mastodontech.de ist einer von vielen unabhängigen Mastodon-Servern, mit dem du dich im Fediverse beteiligen kannst.
Offen für alle (über 16) und bereitgestellt von Markus'Blog

Serverstatistik:

1,5 Tsd.
aktive Profile

#fluiddynamics

4 Beiträge4 Beteiligte1 Beitrag heute
Nicole Sharp<p><strong>La Grande Dune du Pilat</strong></p><p>Southwest of Bordeaux in France stands Europe’s tallest sand dune, La Grande Dune du Pilat. Some 2.7 kilometers long and over 100 meters high, this dune took shape here over thousands of years. It moves inland a few meters every year as winds blowing from the Atlantic push sand up its shallow seaward side to the dune’s crest. There, sand will avalanche down the steeper leeward side, advancing the dune little by little. The dune’s accumulation has not been steady; during cooler and drier times, sand has collected there, but it took warmer and wetter climes to grow the forests that have helped stabilize the soil and build the dune higher. Humanity has played a role as well, at times introducing new tree species to stabilize the dune. (Image credit: W. Liang; via <a href="https://earthobservatory.nasa.gov/images/154130/a-morphing-monument-of-sand?__readwiseLocation=" rel="nofollow noopener" target="_blank">NASA Earth Observatory</a>)</p><p><a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/aeolian-processes/" target="_blank">#aeolianProcesses</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/dunes/" target="_blank">#dunes</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/fluid-dynamics/" target="_blank">#fluidDynamics</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/geophysics/" target="_blank">#geophysics</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/granular-material/" target="_blank">#granularMaterial</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/physics/" target="_blank">#physics</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/sand-dunes/" target="_blank">#sandDunes</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/science/" target="_blank">#science</a></p>
robryk<p><a href="https://en.wikipedia.org/wiki/Nusselt_number#Dittus%E2%80%93Boelter_equation" rel="nofollow noopener" target="_blank"><span class="invisible">https://</span><span class="ellipsis">en.wikipedia.org/wiki/Nusselt_</span><span class="invisible">number#Dittus%E2%80%93Boelter_equation</span></a> says:</p><p>&gt; n = 0.4 for the fluid being heated, and n = 0.3 for the fluid being cooled.</p><p>WTAF. Why do we have different power laws for heat transfer between a solid and liquid when the flow is turbulent _depending on the direction of heat transfer_? I can't think of any simple mean field approximation of the process that would yield that.</p><p><a href="https://qoto.org/tags/physics" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>physics</span></a> <a href="https://qoto.org/tags/fluiddynamics" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>fluiddynamics</span></a></p>
Nicole Sharp<p><strong>Glimpses of Coronal Rain</strong></p><p>Despite its incredible heat, our sun‘s corona is so faint compared to the rest of the star that we can rarely make it out except during a total solar eclipse. But a <a href="https://doi.org/10.1038/s41550-025-02564-0" rel="nofollow noopener" target="_blank">new adaptive optic technique</a> has given us coronal images with unprecedented detail.</p><p>These images come from the 1.6-meter Goode Solar Telescope at Big Bear Solar Observatory, and they required some 2,200 adjustments to the instrument’s mirror every second to counter atmospheric distortions that would otherwise blur the images. With the new technique, the team was able to sharpen their resolution from 1,000 kilometers all the way down to 63 kilometers, revealing heretofore unseen details of plasma from solar prominences dancing in the sun’s magnetic field and cooling plasma falling as coronal rain.</p><p>The team hope to upgrade the 4-meter Daniel K. Inouye Solar Telescope with the technology next, which will enable even finer imagery. (Image credit: <a href="https://nso.edu/press-release/new-adaptive-optics-shows-stunning-details-of-our-stars-atmosphere/" rel="nofollow noopener" target="_blank">Schmidt et al./NJIT/NSO/AURA/NSF</a>; research credit: <a href="https://doi.org/10.1038/s41550-025-02564-0" rel="nofollow noopener" target="_blank">D. Schmidt et al.</a>; via <a href="https://gizmodo.com/telescope-upgrade-reveals-suns-coronal-rain-in-unprecedented-detail-2000607634" rel="nofollow noopener" target="_blank">Gizmodo</a>)</p><p><a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/flow-visualization/" target="_blank">#flowVisualization</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/fluid-dynamics/" target="_blank">#fluidDynamics</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/magnetic-field/" target="_blank">#magneticField</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/magnetohydrodynamics/" target="_blank">#magnetohydrodynamics</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/physics/" target="_blank">#physics</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/plasma/" target="_blank">#plasma</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/science/" target="_blank">#science</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/solar-dynamics/" target="_blank">#solarDynamics</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/stellar-evolution/" target="_blank">#stellarEvolution</a></p>
Nicole Sharp<p><strong>Building a Better Fog Harp</strong></p><p>On arid coastlines, fog rolling in can serve as an important water source. Today’s fog collectors often use tight mesh nets. The narrow holes help catch tiny water particles, but they also clog easily. A few years ago, researchers suggested an alternative design — a fog harp inspired by coastal redwoods — that used closely spaced vertical wires to capture water vapor. At small scales, this technique worked well, but once scaled up to a meter-long fog harp, the strings would stick together once wet — much the way wet hairs cling to one another. </p><p>The group has <a href="https://doi.org/10.1039/D5TA02686E" rel="nofollow noopener" target="_blank">iterated on</a> their design with a new hybrid that maintains the fog harp’s close vertical spacing but adds occasional cross-wires to stabilize. Laboratory tests are promising, with the new hybrid fog harp collecting water with 2 – 8 times the efficiency of either a conventional mesh or their original fog harp. The team notes that even higher efficiencies are possible with electrification. (Image credit: A. Parrish; research credit: <a href="https://doi.org/10.1039/D5TA02686E" rel="nofollow noopener" target="_blank">J. Kaindu et al.</a>; via <a href="https://arstechnica.com/science/2025/06/these-va-tech-scientists-are-building-a-better-fog-harp/?__readwiseLocation=" rel="nofollow noopener" target="_blank">Ars Technica</a>)</p><p><a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/condensation/" target="_blank">#condensation</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/elastocapillarity/" target="_blank">#elastocapillarity</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/fluid-dynamics/" target="_blank">#fluidDynamics</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/fog/" target="_blank">#fog</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/fog-collection/" target="_blank">#fogCollection</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/physics/" target="_blank">#physics</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/science/" target="_blank">#science</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/surface-tension/" target="_blank">#surfaceTension</a></p>
Soh Kam Yung<p>"We discovered that the flickering snake tongue generates two pairs of small, swirling masses of air, or vortices, that act like tiny fans, pulling odors in from each side and jetting them directly into the path of each tongue tip."</p><p><a href="https://theconversation.com/smelling-in-stereo-the-real-reason-snakes-have-flicking-forked-tongues-142363" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">theconversation.com/smelling-i</span><span class="invisible">n-stereo-the-real-reason-snakes-have-flicking-forked-tongues-142363</span></a></p><p><a href="https://mstdn.io/tags/Snakes" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Snakes</span></a> <a href="https://mstdn.io/tags/Biology" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Biology</span></a> <a href="https://mstdn.io/tags/Smelling" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Smelling</span></a> <a href="https://mstdn.io/tags/Nature" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Nature</span></a> <a href="https://mstdn.io/tags/Tongues" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Tongues</span></a> <a href="https://mstdn.io/tags/FluidDynamics" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>FluidDynamics</span></a></p>
Nicole Sharp<p><strong>Martian Streaks Are Dry</strong></p><p>Dark lines appearing on Martian slopes have triggered theories of flowing water or brine on the planet’s surface. But a <a href="https://doi.org/10.1038/s41467-025-59395-w" rel="nofollow noopener" target="_blank">new study suggests</a> that these features are, instead, dry. To explore these streaks, the team assembled a global database of sightings and correlated their map with other known quantities, like temperature, wind speed, and rock slides. By connecting the data across thousands of streaks, they could build statistics about what variables correlated with the streaks’ appearance.</p><p>What they found was that streaks didn’t appear in places connected to liquid water or even frost. Instead, the streaks appeared in spots with high wind speeds and heavy dust accumulation. The team included that, rather than being moist areas, the streaks are dry and form when dust slides down the slope, perhaps triggered by high winds or passing dust devils.</p><p>Although showing that the streaks aren’t associated with water may seem disappointing, it may mean that NASA will be able to explore them sooner. Right now, NASA avoids sending rovers anywhere near water, out of concern that Earth microbes still on the rover could contaminate the Martian environment. (Image credit: NASA; research credit: <a href="https://doi.org/10.1038/s41467-025-59395-w" rel="nofollow noopener" target="_blank">V. Bickel and A. Valantinas</a>; via <a href="https://gizmodo.com/bizarre-streaks-on-mars-arent-caused-by-water-after-all-study-suggests-2000605177?__readwiseLocation=" rel="nofollow noopener" target="_blank">Gizmodo</a>)</p><p><a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/fluid-dynamics/" target="_blank">#fluidDynamics</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/geophysics/" target="_blank">#geophysics</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/mars/" target="_blank">#Mars</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/physics/" target="_blank">#physics</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/planetary-science/" target="_blank">#planetaryScience</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/science/" target="_blank">#science</a></p>
Nicole Sharp<p><strong>Listening for Pollinators</strong></p><p>Can plants recognize the sound of their pollinators? That’s the question behind this <a href="https://www.eurekalert.org/news-releases/1083951" rel="nofollow noopener" target="_blank">recently presented</a> acoustic research. As bees and other pollinators hover, land, and take-off, their bodies buzz in distinctive ways. Researchers recorded these subtle sounds from a <em>Rhodanthidium sticticum&nbsp;</em>bee and played them back to snapdragons, which rely on that insect. They found that the snapdragons responded with an increase in sugar and nectar volume; the plants even altered their gene expression governing sugar transport and nectar production. The researchers suspect that the plants evolved this strategy to attract their most efficient pollinators and thereby increase their own reproductive success. (Image credit: <a href="https://unsplash.com/photos/a-vase-filled-with-purple-flowers-on-top-of-a-table-bA5jzbGtEWw" rel="nofollow noopener" target="_blank">E. Wilcox</a>; research credit: <a href="https://www.eurekalert.org/news-releases/1083951" rel="nofollow noopener" target="_blank">F. Barbero et al.</a>; via <a href="https://www.popsci.com/environment/plants-hear-pollinators/?__readwiseLocation=" rel="nofollow noopener" target="_blank">PopSci</a>)</p><p><a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/acoustics/" target="_blank">#acoustics</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/biology/" target="_blank">#biology</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/fluid-dynamics/" target="_blank">#fluidDynamics</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/insects/" target="_blank">#insects</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/physics/" target="_blank">#physics</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/plants/" target="_blank">#plants</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/pollination/" target="_blank">#pollination</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/science/" target="_blank">#science</a></p>
Nicole Sharp<p><strong>Rolling Down Soft Surfaces</strong></p><p>Place a rigid ball on a hard vertical surface, and it will free fall. Stick a liquid drop there, and it will slide down. But <a href="https://doi.org/10.1039/D4SM01490A" rel="nofollow noopener" target="_blank">researchers discovered</a> that with a soft sphere and a soft surface, it’s possible to roll down a vertical wall. The effect requires just the right level of squishiness for both the wall and sphere, but when conditions are right, the 1-millimeter radius sphere rolls (with a little slipping) down the wall. </p><p>Rolling requires torque, something that’s usually lacking on a vertical surface. But the team found that their soft spheres got the torque needed to roll from their asymmetric contact with the surface. More of the sphere contacted above its centerline than below it. The researchers compared the way the sphere contacted the surface to a crack opening (at the back of the sphere) and a crack closing (at the front of the sphere). That asymmetry creates just enough torque to roll the sphere slowly. The team hopes their discovery opens up new possibilities for soft robots to climb and descend vertical surfaces. (Image and research credit: <a href="https://doi.org/10.1039/D4SM01490A" rel="nofollow noopener" target="_blank">S. Mitra et al.</a>; via <a href="https://gizmodo.com/cool-physics-feat-makes-a-sphere-roll-down-a-vertical-wall-2000610612?__readwiseLocation=" rel="nofollow noopener" target="_blank">Gizmodo</a>)</p><p><a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/adhesion/" target="_blank">#adhesion</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/fluid-dynamics/" target="_blank">#fluidDynamics</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/physics/" target="_blank">#physics</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/science/" target="_blank">#science</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/slip/" target="_blank">#slip</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/soft-matter/" target="_blank">#softMatter</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/solid-mechanics/" target="_blank">#solidMechanics</a></p>
Pustam | पुस्तम | পুস্তম🇳🇵<p>Imagine being a brilliant physicist/mathematician and still avoiding the most important problems because your career depends on publishing frequent papers, not solving the biggest mysteries in the world.</p><p>That's why you can't do things like this in academia.</p><p><a href="https://english.elpais.com/science-tech/2025-06-24/spanish-mathematician-javier-gomez-serrano-and-google-deepmind-team-up-to-solve-the-navier-stokes-million-dollar-problem.html" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">english.elpais.com/science-tec</span><span class="invisible">h/2025-06-24/spanish-mathematician-javier-gomez-serrano-and-google-deepmind-team-up-to-solve-the-navier-stokes-million-dollar-problem.html</span></a></p><p><a href="https://mathstodon.xyz/tags/NavierStokes" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>NavierStokes</span></a> <a href="https://mathstodon.xyz/tags/GoogleDeepMind" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>GoogleDeepMind</span></a> <a href="https://mathstodon.xyz/tags/DeepMind" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>DeepMind</span></a> <a href="https://mathstodon.xyz/tags/MillenniumProblems" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>MillenniumProblems</span></a> <a href="https://mathstodon.xyz/tags/Existence" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Existence</span></a> <a href="https://mathstodon.xyz/tags/Smoothness" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Smoothness</span></a> <a href="https://mathstodon.xyz/tags/Fluid" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Fluid</span></a> <a href="https://mathstodon.xyz/tags/FluidDynamics" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>FluidDynamics</span></a> <a href="https://mathstodon.xyz/tags/Turbulence" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Turbulence</span></a> <a href="https://mathstodon.xyz/tags/Dynamics" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Dynamics</span></a> <a href="https://mathstodon.xyz/tags/TurbulentFlows" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>TurbulentFlows</span></a> <a href="https://mathstodon.xyz/tags/Research" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Research</span></a> <a href="https://mathstodon.xyz/tags/Engineering" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Engineering</span></a> <a href="https://mathstodon.xyz/tags/Physics" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Physics</span></a> <a href="https://mathstodon.xyz/tags/Math" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Math</span></a> <a href="https://mathstodon.xyz/tags/Maths" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Maths</span></a> <a href="https://mathstodon.xyz/tags/Mathematics" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Mathematics</span></a> <a href="https://mathstodon.xyz/tags/UnsolvedProblems" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>UnsolvedProblems</span></a> <a href="https://mathstodon.xyz/tags/BiggestMystery" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>BiggestMystery</span></a> <a href="https://mathstodon.xyz/tags/Flows" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Flows</span></a> <a href="https://mathstodon.xyz/tags/MillionDollarProblem" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>MillionDollarProblem</span></a></p>
Nicole Sharp<p><strong>Seeing the Sun’s South Pole For the First Time</strong></p><p>The ESA-led Solar Orbiter recently used a Venus flyby to lift itself out of the <a href="https://en.wikipedia.org/wiki/Ecliptic" rel="nofollow noopener" target="_blank">ecliptic</a> — the equatorial plane of the Sun where Earth sits. This maneuver offers us the first-ever glimpse of the Sun’s south pole, a region that’s not visible from the ecliptic plane. A close-up view of plasma rising off the pole is shown above, and the video below has even more. </p><p>Solar Orbiter will get even better views of the Sun’s poles in the coming months, perfect for watching what goes on as the Sun’s 11-year-solar-cycle approaches its maximum. During this time, the Sun’s magnetic poles will flip their polarity; already Solar Orbiter’s instruments show that the south pole contains pockets of both positive and negative magnetic polarity — a messy state that’s likely a precursor to the big flip. (Image and video credit: <a href="https://www.esa.int/Science_Exploration/Space_Science/Solar_Orbiter/Solar_Orbiter_gets_world-first_views_of_the_Sun_s_poles" rel="nofollow noopener" target="_blank">ESA &amp; NASA/Solar Orbiter/EUI Team, D. Berghmans (ROB) &amp; ESA/Royal Observatory of Belgium</a>; via <a href="https://gizmodo.com/solar-orbiter-captures-first-clear-views-of-suns-south-pole-and-its-a-hot-mess-2000614511?__readwiseLocation=" rel="nofollow noopener" target="_blank">Gizmodo</a>)</p><p><a href="https://www.youtube.com/watch?v=TU4DcDgaMM0" rel="nofollow noopener" target="_blank">https://www.youtube.com/watch?v=TU4DcDgaMM0</a></p><p><a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/fluid-dynamics/" target="_blank">#fluidDynamics</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/magnetohydrodynamics/" target="_blank">#magnetohydrodynamics</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/physics/" target="_blank">#physics</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/plasma/" target="_blank">#plasma</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/science/" target="_blank">#science</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/solar-dynamics/" target="_blank">#solarDynamics</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/sun/" target="_blank">#sun</a></p>
Nicole Sharp<p><strong>“Now I See – The Collection Vol. 2”</strong></p> <p><a class="" href="https://fyfluiddynamics.com/wp-content/uploads/nowisee2_a.png" rel="nofollow noopener" target="_blank"></a></p> <p><a class="" href="https://fyfluiddynamics.com/wp-content/uploads/nowisee2_b.png" rel="nofollow noopener" target="_blank"></a></p> <p><a class="" href="https://fyfluiddynamics.com/wp-content/uploads/nowisee2_c.png" rel="nofollow noopener" target="_blank"></a></p> <p><a class="" href="https://fyfluiddynamics.com/wp-content/uploads/nowisee2_d.png" rel="nofollow noopener" target="_blank"></a></p> <p><a class="" href="https://fyfluiddynamics.com/wp-content/uploads/nowisee2_e.png" rel="nofollow noopener" target="_blank"></a></p> <p><a class="" href="https://fyfluiddynamics.com/wp-content/uploads/nowisee2_f.png" rel="nofollow noopener" target="_blank"></a></p> <p></p> <p>In the next video of his current collection, <a href="https://fyfluiddynamics.com/?s=De+Giuli" rel="nofollow noopener" target="_blank">Roman De Giuli</a> takes us flying over liquid landscapes that look like our Earth in miniature. Many of them have the feeling of river deltas or glaciers. Sharp-eyed viewers will notice bubbles and flotsam in some of these streams. If you follow them, you can see how the flows vary — wiggling around islands, speeding up through constrictions and slowing down when the stream widens. It is, as always, a beautiful form of flow visualization. (Video and image credit: <a href="http://terracollage.com" rel="nofollow noopener" target="_blank">R. De Giuli</a>)</p><p><a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/flow-visualization/" target="_blank">#flowVisualization</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/fluid-dynamics/" target="_blank">#fluidDynamics</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/fluids-as-art/" target="_blank">#fluidsAsArt</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/laminar-flow/" target="_blank">#laminarFlow</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/physics/" target="_blank">#physics</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/river-delta/" target="_blank">#riverDelta</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/science/" target="_blank">#science</a></p>
Nicole Sharp<p><strong>Predicting Yield</strong></p><p>We’ve all experienced the frustration of ketchup refusing to leave the bottle or toothpaste that shoots out suddenly. These materials are yield stress fluids, which transition from solid-like behavior to liquid flow once the right amount of force is applied. A <a href="https://doi.org/10.1103/PhysRevLett.134.208202" rel="nofollow noopener" target="_blank">new study suggests</a> that — despite their wide range of characteristics — these fluids share a universal relation: their yield transition (when they start to flow) depends on their characteristics when at rest. Interestingly, this relationship seems to hold not only for polymeric fluids like the one in the study but also nonpolymeric ones. (Image credit: <a href="https://unsplash.com/photos/a-red-liquid-dripping-from-a-pipe-on-a-counter-4hq7g3pWgTY" rel="nofollow noopener" target="_blank">haideyy</a>; research credit: <a href="https://doi.org/10.1103/PhysRevLett.134.208202" rel="nofollow noopener" target="_blank">D. Keane et al.</a>; via <a href="https://physics.aps.org/articles/v18/107?__readwiseLocation=" rel="nofollow noopener" target="_blank">APS Physics</a>)</p><p></p><p><a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/fluid-dynamics/" target="_blank">#fluidDynamics</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/physics/" target="_blank">#physics</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/rheology/" target="_blank">#rheology</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/science/" target="_blank">#science</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/yield-stress-fluid/" target="_blank">#yieldStressFluid</a></p>
Nicole Sharp<p><strong>Evaporating Off Butterfly Scales</strong></p><p>This award-winning macro video shows scattered water droplets evaporating off a butterfly‘s wing. At first glance, it’s hard to see any motion outside of the camera’s sweep, but if you focus on one drop at a time, you’ll see them shrinking. For most of their lifetime, these tiny drops are nearly spherical; that’s due to the hydrophobic, water-shedding nature of the wing. But as the drops get smaller and less spherical, you may notice how the drop distorts the scales it adheres to. Wherever the drop touches, the wing scales are pulled up, and, when the drop is gone, the scales settle back down. This is a subtle but neat demonstration of the water’s adhesive power. (Video and image credit: J. McClellan; via <a href="https://www.nikonsmallworld.com/galleries/2024-small-world-in-motion-competition" rel="nofollow noopener" target="_blank">Nikon Small World in Motion</a>)</p> Water droplets evaporate from the wing of a peacock butterfly. <p><a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/adhesion/" target="_blank">#adhesion</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/biology/" target="_blank">#biology</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/butterfly/" target="_blank">#butterfly</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/evaporation/" target="_blank">#evaporation</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/fluid-dynamics/" target="_blank">#fluidDynamics</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/hydrophobic/" target="_blank">#hydrophobic</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/physics/" target="_blank">#physics</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/science/" target="_blank">#science</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/sessile-drop/" target="_blank">#sessileDrop</a></p>
Nicole Sharp<p><strong>Io’s Missing Magma Ocean</strong></p><p>In the late 1970s, scientists conjectured that Io was likely a volcanic world, heated by <a href="https://en.wikipedia.org/wiki/Tidal_heating" rel="nofollow noopener" target="_blank">tidal forces</a> from Jupiter that squeeze it along its elliptical orbit. Only months later, images from Voyager 1’s flyby confirmed the moon’s volcanism. Magnetometer data from Galileo’s later flyby suggested that tidal heating had created a shallow magma ocean that powered the moon’s volcanic activity. But <a href="https://doi.org/10.1038/s41586-024-08442-5" rel="nofollow noopener" target="_blank">newly analyzed data</a> from Juno’s flyby shows that Io doesn’t have a magma ocean after all.</p><p>The new flyby used radio transmission data to measure any little wobbles that Io caused by tugging Juno off its expected course. The team expected a magma ocean to cause plenty of distortions for the spacecraft, but the effect was much slighter than expected. Their conclusion? Io has no magma ocean lurking under its crust. The results don’t preclude a deeper magma ocean, but at what point do you distinguish a magma ocean from a body’s liquid core?</p><p>Instead, scientists are now exploring the possibility that Io’s magma shoots up from much smaller pockets of magma rather than one enormous, shared source. (Image credit: NASA/JPL/USGS; research credit: <a href="https://doi.org/10.1038/s41586-024-08442-5" rel="nofollow noopener" target="_blank">R. Park et al.</a>; see also <a href="https://www.quantamagazine.org/whats-going-on-inside-io-jupiters-volcanic-moon-20250425/?__readwiseLocation=" rel="nofollow noopener" target="_blank">Quanta</a>)</p><p><a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/fluid-dynamics/" target="_blank">#fluidDynamics</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/geophysics/" target="_blank">#geophysics</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/io/" target="_blank">#Io</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/magma/" target="_blank">#magma</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/physics/" target="_blank">#physics</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/planetary-science/" target="_blank">#planetaryScience</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/science/" target="_blank">#science</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/subsurface-oceans/" target="_blank">#subsurfaceOceans</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/tidal-heating/" target="_blank">#tidalHeating</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/volcano/" target="_blank">#volcano</a></p>
Nicole Sharp<p><strong>“Droplet on a Plucked Wire”</strong></p> <p><a class="" href="https://fyfluiddynamics.com/wp-content/uploads/drop_string1.png" rel="nofollow noopener" target="_blank"></a></p> <p><a class="" href="https://fyfluiddynamics.com/wp-content/uploads/drop_string2.png" rel="nofollow noopener" target="_blank"></a></p> <p><a class="" href="https://fyfluiddynamics.com/wp-content/uploads/drop_string3.png" rel="nofollow noopener" target="_blank"></a></p> <p></p> <p>What happens to a droplet hanging on a wire when the wire gets plucked? That’s the fundamental question behind this video, which shows the effects of wire speed, viscosity, and viscoelasticity on a drop’s detachment. With lovely high-speed video and close-up views, you get to appreciate even subtle differences between each drop. Capillary waves, viscoelastic waves, and Plateau-Rayleigh instabilities abound! (Video and image credit: <a href="https://doi.org/10.1103/APS.DFD.2024.GFM.V2691248" rel="nofollow noopener" target="_blank">D. Maity et al.</a>)</p><p><a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/2024gofm/" target="_blank">#2024gofm</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/droplets/" target="_blank">#droplets</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/fluid-dynamics/" target="_blank">#fluidDynamics</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/physics/" target="_blank">#physics</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/science/" target="_blank">#science</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/viscoelasticity/" target="_blank">#viscoelasticity</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/viscous-flow/" target="_blank">#viscousFlow</a></p>
Nicole Sharp<p><strong>“C R Y S T A L S”</strong></p> <p><a class="" href="https://fyfluiddynamics.com/wp-content/uploads/crystals3.png" rel="nofollow noopener" target="_blank"></a></p> <p><a class="" href="https://fyfluiddynamics.com/wp-content/uploads/crystals2.png" rel="nofollow noopener" target="_blank"></a></p> <p><a class="" href="https://fyfluiddynamics.com/wp-content/uploads/crystals1.png" rel="nofollow noopener" target="_blank"></a></p> <p><a class="" href="https://fyfluiddynamics.com/wp-content/uploads/crystals5.png" rel="nofollow noopener" target="_blank"></a></p> <p><a class="" href="https://fyfluiddynamics.com/wp-content/uploads/crystals4.png" rel="nofollow noopener" target="_blank"></a></p> <p><a class="" href="https://fyfluiddynamics.com/wp-content/uploads/crystals6.png" rel="nofollow noopener" target="_blank"></a></p> <p></p> <p>In “C R Y S T A L S,” filmmaker Thomas Blanchard captures the slow, inexorable growth of potassium phosphate crystals. He took over 150,000 images — one per minute — to document the way crystals formed as the originally transparent liquid evaporated. Some crystals branch into fractals. Others bulge outward like a condensing cloud or a sprouting mushroom. (Video and image credit: <a href="https://thomas-blanchard.com" rel="nofollow noopener" target="_blank">T. Blanchard</a>)</p><p><a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/crystal-growth/" target="_blank">#crystalGrowth</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/evaporation/" target="_blank">#evaporation</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/fluid-dynamics/" target="_blank">#fluidDynamics</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/fluids-as-art/" target="_blank">#fluidsAsArt</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/physics/" target="_blank">#physics</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/science/" target="_blank">#science</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/timelapse/" target="_blank">#timelapse</a></p>
michael<p>17-Jun-2025<br>Sculpting the surface of the <a href="https://mastodon.social/tags/water" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>water</span></a><br>Researchers at the University of Liège are revolutionising the handling of <a href="https://mastodon.social/tags/liquids" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>liquids</span></a> and floating objects thanks to <a href="https://mastodon.social/tags/capillary" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>capillary</span></a> action. <br><a href="https://www.eurekalert.org/news-releases/1087817" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://www.</span><span class="ellipsis">eurekalert.org/news-releases/1</span><span class="invisible">087817</span></a> <a href="https://mastodon.social/tags/science" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>science</span></a> <a href="https://mastodon.social/tags/fluidDynamics" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>fluidDynamics</span></a> <a href="https://mastodon.social/tags/physics" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>physics</span></a></p>
Nicole Sharp<p><strong>Stunning Interstellar Turbulence</strong></p><p>The space between stars, known as the interstellar medium, may be sparse, but it is far from empty. Gas, dust, and plasma in this region forms compressible magnetized turbulence, with some pockets moving supersonically and others moving slower than sound. The flows here influence how stars form, how cosmic rays spread, and where metals and other planetary building blocks wind up. To better understand the physics of this region, <a href="https://doi.org/10.1038/s41550-025-02551-5" rel="nofollow noopener" target="_blank">researchers built</a> a numerical simulation with over 1,000 billion grid points, creating an unprecedentedly detailed picture of this turbulence.</p><p>The images above are two-dimensional slices from the full 3D simulation. The upper image shows the current density while the lower one shows mass density. On the right side of the images, magnetic field lines are superimposed in white. The results are gorgeous. Can you imagine a fly-through video? (Image and research credit: <a href="https://doi.org/10.1038/s41550-025-02551-5" rel="nofollow noopener" target="_blank">J. Beattie et al.</a>; via <a href="https://gizmodo.com/most-detailed-simulation-of-magnetic-turbulence-in-space-is-surprisingly-beautiful-2000606528?__readwiseLocation=" rel="nofollow noopener" target="_blank">Gizmodo</a>)</p><p><a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/astrophysics/" target="_blank">#astrophysics</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/compressibility/" target="_blank">#compressibility</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/flow-visualization/" target="_blank">#flowVisualization</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/fluid-dynamics/" target="_blank">#fluidDynamics</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/fluids-as-art/" target="_blank">#fluidsAsArt</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/magnetohydrodynamics/" target="_blank">#magnetohydrodynamics</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/numerical-simulation/" target="_blank">#numericalSimulation</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/physics/" target="_blank">#physics</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/science/" target="_blank">#science</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/turbulence/" target="_blank">#turbulence</a></p>
José - Luis Gutiérrez Villanue<p>☀️ Summer + pools = a real physics experiment 💥</p><p>Scientists studied what causes the biggest splash in the water — from air resistance to surface tension.</p><p>It’s all fluid dynamics.<br>And it’s a great reminder that physics explains everything around us.</p><p>Read the full breakdown here:<br>🔗 <a href="https://www.sciencenews.org/article/biggest-splash-pool-manu-science" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://www.</span><span class="ellipsis">sciencenews.org/article/bigges</span><span class="invisible">t-splash-pool-manu-science</span></a></p><p><a href="https://mastodon.social/tags/Physics" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Physics</span></a> <a href="https://mastodon.social/tags/STEM" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>STEM</span></a> <a href="https://mastodon.social/tags/FluidDynamics" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>FluidDynamics</span></a></p>
Nicole Sharp<p><strong>Ponding on the Ice Shelf</strong></p><p>Glaciers flow together and march out to sea along the Amery Ice Shelf in this satellite image of Antarctica. Three glaciers — flowing from the top, left, and bottom of the image — meet just to the right of center and pass from the continental bedrock onto the ice-covered ocean. The ice shelf is recognizable by its plethora of meltwater ponds, which appear as bright blue areas. Each austral summer, meltwater gathers in low-lying regions on the ice, potentially destabilizing the ice shelf through fracture and drainage. This region near the ice shelf’s grounding line is particularly prone to ponding. Regions further afield (right, beyond the image) are colder and drier, often allowing meltwater to refreeze. (Image credit: W. Liang; via <a href="https://earthobservatory.nasa.gov/images/153841/meltwater-ponds-on-the-amery-ice-shelf" rel="nofollow noopener" target="_blank">NASA Earth Observatory</a>)</p><p></p><p><a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/fluid-dynamics/" target="_blank">#fluidDynamics</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/geophysics/" target="_blank">#geophysics</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/glacier/" target="_blank">#glacier</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/ice-shelf/" target="_blank">#iceShelf</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/melting/" target="_blank">#melting</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/physics/" target="_blank">#physics</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/planetary-science/" target="_blank">#planetaryScience</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/satellite-image/" target="_blank">#satelliteImage</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/science/" target="_blank">#science</a></p>