mastodontech.de ist einer von vielen unabhängigen Mastodon-Servern, mit dem du dich im Fediverse beteiligen kannst.
Offen für alle (über 16) und bereitgestellt von Markus'Blog

Serverstatistik:

1,5 Tsd.
aktive Profile

#approximation

0 Beiträge0 Beteiligte0 Beiträge heute
erAck<p>Pi Approximation Day (22/7) actually is on 21.9911485751286 / 7 = 07-21T23:47:15.237...</p><p><a href="https://social.tchncs.de/tags/Pi" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Pi</span></a> <a href="https://social.tchncs.de/tags/Approximation" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Approximation</span></a> <a href="https://social.tchncs.de/tags/Day" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Day</span></a> <a href="https://social.tchncs.de/tags/PiApproximationDay" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>PiApproximationDay</span></a></p>
Paul Kinsler<p>It is well known that the "spherical cow" is an overly aggressive approximation. Hence:</p><p><a href="https://arxiv.org/abs/2504.00506" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://</span><span class="">arxiv.org/abs/2504.00506</span><span class="invisible"></span></a></p><p><a href="https://fediscience.org/tags/spherical" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>spherical</span></a> <a href="https://fediscience.org/tags/cow" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>cow</span></a> <a href="https://fediscience.org/tags/approximation" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>approximation</span></a></p>
JMLR<p>'Zeroth-order Stochastic Approximation Algorithms for DR-submodular Optimization', by Yuefang Lian, Xiao Wang, Dachuan Xu, Zhongrui Zhao.</p><p><a href="http://jmlr.org/papers/v25/23-1523.html" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">http://</span><span class="ellipsis">jmlr.org/papers/v25/23-1523.ht</span><span class="invisible">ml</span></a> <br> <br><a href="https://sigmoid.social/tags/approximation" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>approximation</span></a> <a href="https://sigmoid.social/tags/optimization" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>optimization</span></a> <a href="https://sigmoid.social/tags/algorithms" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>algorithms</span></a></p>
IT News<p>Misleading GPS, Philosophy of Maps, And You - The oft-quoted saying “all models are wrong, but some are useful” is a tounge-in-c... - <a href="https://hackaday.com/2024/09/10/misleading-gps-philosophy-of-maps-and-you/" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">hackaday.com/2024/09/10/mislea</span><span class="invisible">ding-gps-philosophy-of-maps-and-you/</span></a> <a href="https://schleuss.online/tags/approximation" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>approximation</span></a> <a href="https://schleuss.online/tags/precision" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>precision</span></a> <a href="https://schleuss.online/tags/gpshacks" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>gpshacks</span></a> <a href="https://schleuss.online/tags/accuracy" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>accuracy</span></a> <a href="https://schleuss.online/tags/mapping" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>mapping</span></a> <a href="https://schleuss.online/tags/garmin" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>garmin</span></a> <a href="https://schleuss.online/tags/strava" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>strava</span></a> <a href="https://schleuss.online/tags/model" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>model</span></a> <a href="https://schleuss.online/tags/gps" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>gps</span></a> <a href="https://schleuss.online/tags/map" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>map</span></a></p>
Pustam | पुस्तम | পুস্তম🇳🇵<p>Physics heresy: Projectiles don’t actually make parabolas</p><p>Taught in every introductory physics class for centuries, the parabola is only an imperfect approximation of the true path of a projectile. <a href="https://mathstodon.xyz/tags/Projectile" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Projectile</span></a> <a href="https://mathstodon.xyz/tags/Projectiles" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Projectiles</span></a> <a href="https://mathstodon.xyz/tags/ProjectileMotion" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>ProjectileMotion</span></a> <a href="https://mathstodon.xyz/tags/Parabola" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Parabola</span></a> <a href="https://mathstodon.xyz/tags/Approximation" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Approximation</span></a> <a href="https://mathstodon.xyz/tags/Physics" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Physics</span></a> <a href="https://mathstodon.xyz/tags/Heresy" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Heresy</span></a> <a href="https://mathstodon.xyz/tags/Parabolas" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Parabolas</span></a></p><p><a href="https://bigthink.com/starts-with-a-bang/projectiles-dont-make-parabolas/" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">bigthink.com/starts-with-a-ban</span><span class="invisible">g/projectiles-dont-make-parabolas/</span></a></p>
Pustam | पुस्तम | পুস্তম🇳🇵<p>The following formula yields the correct decimal digits of π up to 42 quadrillion digits. Also, see the general form. This high-precision approximation is related to the properties of theta functions or the Gaussian integral.</p><p><a href="https://mathstodon.xyz/tags/pi" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>pi</span></a> <a href="https://mathstodon.xyz/tags/digits" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>digits</span></a> <a href="https://mathstodon.xyz/tags/quadrillion" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>quadrillion</span></a> <a href="https://mathstodon.xyz/tags/quadrilliondigits" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>quadrilliondigits</span></a> <a href="https://mathstodon.xyz/tags/GaussianIntegral" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>GaussianIntegral</span></a> <a href="https://mathstodon.xyz/tags/ThetaFunction" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>ThetaFunction</span></a> <a href="https://mathstodon.xyz/tags/Maths" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Maths</span></a> <a href="https://mathstodon.xyz/tags/Formula" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Formula</span></a> <a href="https://mathstodon.xyz/tags/Approximation" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Approximation</span></a></p>
C.<p>Cazabon's <a href="https://mindly.social/tags/Film" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Film</span></a> <a href="https://mindly.social/tags/Quality" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Quality</span></a> <a href="https://mindly.social/tags/Approximation" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Approximation</span></a>:</p><p>The overall quality and <a href="https://mindly.social/tags/watchability" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>watchability</span></a> of a film can be approximated with the following <a href="https://mindly.social/tags/equation" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>equation</span></a>:</p><p>Q = 1 / ((n - 2) ^ 2)</p><p>... where Q is `watchability` in the interval [0, 1], and `n` is the number of genres the movie is categorized as having in its IMDB listing.</p><p>Action, Comedy: 1.0<br>Drama, Thriller, Music: 1.0<br>Action, Comedy, Drama, Horror, Thriller: 0.111</p><p>Note: there's a discontinuity at n == 2, which we avoid by using the value `1` in that case.</p><p>1/2</p>
Stewart Russell<p>I've found a decent working approximation of π for <a href="https://xoxo.zone/tags/PostScript" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>PostScript</span></a> </p><p> /pi 0.001 sin 2 div 360000 mul def</p><p>Accurate to 7 decimal places. The language uses single-precision floating point, and all its trig routines work in degrees.</p><p>This calculates π using the area of a unit radius n-gon, with n=360000</p><p> A = ½n⋅sin(360°÷n)</p><p>One of Ramanujan's approximations</p><p> π ≅ 9801÷(2206⋅√2)</p><p>is about as accurate but opaque.</p><p><a href="https://xoxo.zone/tags/mathematics" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>mathematics</span></a> <a href="https://xoxo.zone/tags/pi" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>pi</span></a> <a href="https://xoxo.zone/tags/approximation" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>approximation</span></a> <a href="https://xoxo.zone/tags/FloatingPoint" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>FloatingPoint</span></a></p>
Thomas Arend<p><a href="https://nrw.social/tags/CO2" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>CO2</span></a> <a href="https://nrw.social/tags/approximation" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>approximation</span></a> <a href="https://nrw.social/tags/climate" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>climate</span></a> <a href="https://nrw.social/tags/ClimateChange" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>ClimateChange</span></a> <a href="https://nrw.social/tags/klima" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>klima</span></a> <a href="https://nrw.social/tags/klimakrise" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>klimakrise</span></a> <a href="https://nrw.social/tags/Klimawandel" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Klimawandel</span></a> </p><p>Ich habe nochmal versucht, die <a href="https://nrw.social/tags/KeelingKurve" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>KeelingKurve</span></a> zu approximieren. Ist mir gelungen.</p><p>Erschreckend, wie gut die Approximation ist und wie stabil die CO₂-Konzentration ansteigt.</p><p>Anfang 2000 hätte der Wert für April 2023 auf 2,83 ppm genau vorhergesagt können – und wäre unterschätzt worden.</p><p>BTW: Neben der jährlichen Oszillation gibt es seltsamerweise eine schwächere, halbjährliche Oszillation.</p><p><a href="https://byggvir.de/2023/05/16/approximating-monthly-data-of-the-keeling-curve-of-atmospheric-co2-concentration-using-exponential-and-sinusoidal-functions/" rel="nofollow noopener" target="_blank"><span class="invisible">https://</span><span class="ellipsis">byggvir.de/2023/05/16/approxim</span><span class="invisible">ating-monthly-data-of-the-keeling-curve-of-atmospheric-co2-concentration-using-exponential-and-sinusoidal-functions/</span></a></p>